On locating and locating-total domination edge addition critical graphs

被引:0
|
作者
Dali, Widad [1 ]
Blidia, Mostafa [2 ]
机构
[1] Univ Algiers 3, Fac Econ & Management, Algiers, Algeria
[2] Univ Blida, Dept Math, Lamda RO, Blida, Algeria
关键词
locating-total domination; critical graph; SETS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set of vertices S of a graph G = (V, E) is a locating-dominating set, abbreviated (LDS), if for every pair of distinct vertices u and v in V - S, the neighborhoods of u and v in S are nonempty and different. A locating-total dominating set, abbreviated (LTDS), is a LDS whose induced subgraph has no isolated vertices. The locating-domination number, gamma(L)(G), of G is the minimum cardinality of a LDS of G, and the locating-total domination number, gamma(t)(L)(G), of G is the minimum cardinality of a LTDS of G. The addition of any missing edge e in a graph G, can increase, decrease or remain unchanged the locating (locating-total, respectively) domination number. A graph G is gamma(+)(L)-EA-critical (gamma(-)(L)-EA-critical, respectively) if gamma(L)(G) < gamma(L)(G+e) (gamma(L)(G+e) < gamma(L)(G), respectively) for every e is not an element of E. gamma(t+)(L)-EA-critical and gamma(t-)(L)-EA-critical graphs are defined similarly. In this paper, we give characterizations of pi(+)-EA-critical graphs and pi(-)-EA-critical trees where pi is an element of{gamma(L), gamma(t)(L)}.
引用
收藏
页码:303 / 313
页数:11
相关论文
共 50 条
  • [31] OPTIMAL LOCATING-TOTAL DOMINATING SETS IN STRIPS OF HEIGHT 3
    Junnila, Ville
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (03) : 447 - 462
  • [32] Locating Edge Domination Number of Some Classes of Claw-Free Cubic Graphs
    Sardar, Muhammad Shoaib
    Choudhry, Hamna
    Liu, Jia-Bao
    JOURNAL OF FUNCTION SPACES, 2024, 2024
  • [33] Edge-locating coloring of graphs
    Korivand, Meysam
    Mojdeh, Doost Ali
    Baskoro, Edy Tri
    Erfanian, Ahmad
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2024, 12 (01) : 55 - 73
  • [34] A note on extremal total domination edge critical graphs
    Hanson, D
    Wang, P
    UTILITAS MATHEMATICA, 2003, 63 : 89 - 96
  • [35] Total domination edge critical graphs with minimum diameter
    van der Merwe, LC
    Mynhardt, CM
    Haynes, TW
    ARS COMBINATORIA, 2003, 66 : 79 - 96
  • [36] Properties of total domination edge-critical graphs
    Henning, Michael A.
    van der Merwe, Lucas C.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (02) : 147 - 153
  • [37] Trees with No Locating Roman Domination Critical Vertices
    Hadi Rahbani
    Ali Taherifar
    Nader Jafari Rad
    Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 585 - 592
  • [38] Trees with No Locating Roman Domination Critical Vertices
    Rahbani, Hadi
    Taherifar, Ali
    Jafari Rad, Nader
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (02): : 585 - 592
  • [39] Locating domination number of m-shadowing of graphs
    Dafik
    Agustin, Ika Hesti
    Albirri, Ermita Rizki
    Alfarisi, Ridho
    Prihandini, R. M.
    1ST INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2018, 1008
  • [40] Total Domination Edge Critical Graphs with Total Domination Number Three and Many Dominating Pairs
    Camino Balbuena
    Adriana Hansberg
    Teresa W. Haynes
    Michael A. Henning
    Graphs and Combinatorics, 2015, 31 : 1163 - 1176