Ab initio pseudopotential study of vacancies and self-interstitials in hcp titanium

被引:48
|
作者
Raji, Abdulrafiu Tunde [1 ]
Scandolo, Sandro [2 ]
Mazzarello, Riccardo [3 ]
Nsengiyumva, Schadrack [1 ]
Haerting, Margit [1 ]
Britton, David Thomas [1 ]
机构
[1] Univ Cape Town, Dept Phys, ZA-7701 Cape Town, South Africa
[2] Abdus Salam Int Ctr Theoret Phys, Condensed Matter & Stat Phys Sect, I-34014 Trieste, Italy
[3] Int Sch Adv Studies SISSA, I-34014 Trieste, Italy
基金
新加坡国家研究基金会;
关键词
self-interstitial; ab initio; density-functional theory; ion implantation; point defects; residual stress; titanium; TRANSITION-METALS; POINT-DEFECTS; FORMATION ENERGIES; 1ST-PRINCIPLES CALCULATIONS; ALPHA-TI; BCC LI; ZIRCONIUM; DIFFUSION; ZR; MONOVACANCIES;
D O I
10.1080/14786430903019032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By means of an ab initio plane-wave pseudopotential method, monovacancy, divacancy and self-interstitials in hcp titanium are investigated. The calculated monovacancy formation energy is 1.97 eV, which is in excellent agreement with other theoretical calculations, and agrees qualitatively with published experimental results. The relaxation of the atoms around a single vacancy is observed to be small. Two divacancy configurations, the in-plane and the off-plane, have also been shown to be equally stable. With regards to the interstitials, of the eight configurations studied, two (octahedral and basal octahedral) have relatively lower formation energies and are, thus, the most likely stable configurations. We find small energy differences between them, suggesting their possible co-existence. It is also observed that the tetrahedral configuration decays to a split dumbbell configuration, whereas both the basal tetrahedral and the basal pseudocrowdion interstitials decay to the basal octahedral configuration. Using the nudged elastic band method (NEB), we determine a possible minimum energy path (MEP) for the diffusion of self-interstitial titanium atoms from an octahedral site to the nearest octahedral site. The energy barrier for this migration mechanism is shown to be about 0.20 eV.
引用
收藏
页码:1629 / 1645
页数:17
相关论文
共 50 条