Dealing with Topological Information Within a Fully Convolutional Neural Network

被引:3
|
作者
Decenciere, Etienne [1 ]
Velasco-Forero, Santiago [1 ]
Min, Fu [2 ]
Chen, Juanjuan [2 ]
Burdin, Helene [3 ]
Gauthier, Gervais [3 ]
Lay, Bruno [3 ]
Bornschloegl, Thomas [4 ]
Baldeweck, Therese [4 ]
机构
[1] PSL Res Univ, MINES ParisTech, Ctr Math Morphol, Fontainebleau, France
[2] LOreal Res & Innovat, 550 Jinyu Rd, Shanghai, Peoples R China
[3] ADCIS SA, 3 Rue Martin Luther King, F-14280 St Contest, France
[4] LOreal Res & Innovat, 1 Ave Eugene Schueller, F-93601 Aulnay Sous Bois, France
关键词
Histological image segmentation; Convolutional neural network; Geodesic operators; Mathematical morphology;
D O I
10.1007/978-3-030-01449-0_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A fully convolutional neural network has a receptive field of limited size and therefore cannot exploit global information, such as topological information. A solution is proposed in this paper to solve this problem, based on pre-processing with a geodesic operator. It is applied to the segmentation of histological images of pigmented reconstructed epidermis acquired via Whole Slide Imaging.
引用
收藏
页码:462 / 471
页数:10
相关论文
共 50 条
  • [21] Fully automatic image colorization based on Convolutional Neural Network
    Varga, Domonkos
    Sziranyi, Tamas
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3691 - 3696
  • [22] Employing a Fully Convolutional Neural Network for Road Marking Detection
    Horita, Luiz Ricardo T.
    Grassi Junior, Valdir
    2017 LATIN AMERICAN ROBOTICS SYMPOSIUM (LARS) AND 2017 BRAZILIAN SYMPOSIUM ON ROBOTICS (SBR), 2017,
  • [23] A fully convolutional neural network for the quantification of mitral regurgitation in echocardiography
    Zhong, Lu
    Deng, Qing
    Wang, Yin
    Song, Hongning
    Chen, Jinling
    Zhou, Qing
    Xiao, Jinsheng
    Cao, Sheng
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (12) : 8707 - 8719
  • [24] Improving the Seismic Impedance Inversion by Fully Convolutional Neural Network
    Tao, Liurong
    Gu, Zhiwei
    Ren, Haoran
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2025, 13 (02)
  • [25] Carpal Bone Segmentation Using Fully Convolutional Neural Network
    Meng, Liang Kim
    Khalil, Azira
    Nizar, Muhamad Hanif Ahmad
    Nisham, Maryam Kamarun
    Pingguan-Murphy, Belinda
    Hum, Yan Chai
    Salim, Maheza Irna Mohamad
    Lai, Khin Wee
    CURRENT MEDICAL IMAGING, 2019, 15 (10) : 983 - 989
  • [26] Fully hardware-implemented memristor convolutional neural network
    Yao, Peng
    Wu, Huaqiang
    Gao, Bin
    Tang, Jianshi
    Zhang, Qingtian
    Zhang, Wenqiang
    Yang, J. Joshua
    Qian, He
    NATURE, 2020, 577 (7792) : 641 - 646
  • [27] Spatiotemporal Meteorological Prediction Based on Fully Convolutional Neural Network
    Zhang, Jiaqi
    Wang, Bin
    Hua, Mingyang
    Chen, Zekun
    Liang, Shili
    Kang, Xinyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [28] Residual neural network-based fully convolutional network for microstructure segmentation
    Jang, Junmyoung
    Van, Donghyun
    Jang, Hyojin
    Baik, Dae Hyun
    Yoo, Sang Duk
    Park, Jaewoong
    Mhin, Sungwook
    Mazumder, Jyoti
    Lee, Seung Hwan
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2020, 25 (04) : 282 - 289
  • [29] A differential information residual convolutional neural network for pansharpening
    Jiang, Menghui
    Shen, Huanfeng
    Li, Jie
    Yuan, Qiangqiang
    Zhang, Liangpei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 163 (163) : 257 - 271
  • [30] Processing of chromatic information in a deep convolutional neural network
    Flachot, Alban
    Gegenfurtner, Karl R.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2018, 35 (04) : B334 - B346