Electrochemical Behavior of Phoenix tree leaves derived Porous Carbon Material as Electrode for Supercapacitors

被引:1
|
作者
Yu, Feifei [1 ]
Wang, Fenglan [1 ]
Yang, Yanzhang [2 ]
机构
[1] Shenyang Univ, Sch Mech Engn, Shenyang 110044, Liaoning, Peoples R China
[2] Shenyang Kedao Instrument Co Ltd, Shenyang 110044, Liaoning, Peoples R China
来源
关键词
Supercapacitors; Porous carbon materials; Fuel cells vehicles; Hydrothermal carbonization; KOH activation; ENHANCED ELECTROCATALYTIC ACTIVITY; ENERGY-STORAGE SYSTEM; OXYGEN REDUCTION; HYDROGEN EVOLUTION; FUEL CELL/BATTERY/ULTRACAPACITOR; CELL; VEHICLE; ULTRACAPACITOR; NANOPARTICLES; TEMPERATURE;
D O I
10.20964/2022.10.58
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Due to the limitation of hydrolysis voltage, the operating voltage of aqueous electrolyte-based supercapacitors generally does not exceed 1.2 V, which severely limits the application of aqueous supercapacitors. In fuel cell vehicles (FCV), supercapacitors are generally used as peaking power sources (PPS) with an aqueous electrolyte. In this study, an ultra-capacitive/oxygen reduction bifunctional electrode material was designed and prepared as a fuel cell cathode material to realize the functions of fuel cell and PPS in the same electrochemical cell, thus simplifying the structure of the FCV energy subsystem. In this work, a porous material (PC) was prepared by hydrothermal carbonization with phoenix tree leaves being a carbon source. PC has an oxygen reduction electrocatalytic activity similar to commercial 30 wt.% Pt/C. The change in electrode potential is accompanied by the generation of a charging current, the magnitude of which is related to the rate of change of electrode potential. Using PC as a fuel cell cathode material is expected to simplify the structure of the FCV energy subsystem.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Improved electrochemical performance of polyindole/carbon nanotubes composite as electrode material for supercapacitors
    Zhi-Jiang Cai
    Qin Zhang
    Xian-You Song
    Electronic Materials Letters, 2016, 12 : 830 - 840
  • [32] Improved Electrochemical Performance of Polyindole/Carbon Nanotubes Composite as Electrode Material for Supercapacitors
    Cai, Zhi-Jiang
    Zhang, Qin
    Song, Xian-You
    ELECTRONIC MATERIALS LETTERS, 2016, 12 (06) : 830 - 840
  • [33] New nanostructured electrode material for electrochemical supercapacitors
    Shlyakhtin, Oleg A.
    Song, Min Seob
    Oh, Young-Jei
    2007 2ND IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1-3, 2007, : 67 - +
  • [34] Advancements in biomass derived porous carbon materials and their surface influence effect on electrode electrochemical performance for sustainable supercapacitors: A review
    Temesgen, Tilahun
    Bekele, Eneyew Tilahun
    Gonfa, Bedasa Abdisa
    Tufa, Lemma Teshome
    Sabir, Fedlu Kedir
    Tadesse, Sisay
    Dessie, Yilkal
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [35] Novel porous carbon material derived from hypercross-linked polymer of p-xylene for supercapacitors electrode
    Kim, Sang-Hyo
    Vinodh, Rajangam
    Gopi, Chandu V. V. Muralee
    Kummara, Venkata Guru Raghavendra
    Sambasivam, Sangaraju
    Obaidat, Ihab M.
    Kim, Hee-Je
    MATERIALS LETTERS, 2020, 263
  • [36] Synthesis of rice husk derived porous carbon as low-cost and high-performance electrode material for supercapacitors
    Diao, Sijie
    Xie, Zhemin
    Wei, Guiyu
    Xu, Ruizheng
    Wen, Jianfeng
    Tang, Tao
    Jiang, Li
    Hu, Guanghui
    Li, Ming
    Huang, Haifu
    DIAMOND AND RELATED MATERIALS, 2024, 149
  • [37] Porous carbon derived from bacteria and yeast: the potential electrode material for the development of symmetric high energy density supercapacitors
    Krishnaveni Kalaiappan
    Thirumal Vediyappan
    Radhika Govindaraju
    Rajkumar Palanisamy
    Subadevi Rengapillai
    Sivakumar Marimuthu
    Yoo Kisoo
    Kim Jinho
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [38] Two-Step Preparation of Hierarchical Porous Carbon Materials Derived from Tannin for Use as an Electrode Material for Supercapacitors
    Deng J.
    Zhang Q.
    Lan Y.
    Luo L.
    Dai Z.
    Lin Z.
    Lu Z.
    Yuan J.
    Fu Y.
    Luo L.
    Zhao W.
    Journal of Renewable Materials, 2023, 11 (06) : 2631 - 2646
  • [39] Porous carbon derived from bacteria and yeast: the potential electrode material for the development of symmetric high energy density supercapacitors
    Kalaiappan, Krishnaveni
    Vediyappan, Thirumal
    Govindaraju, Radhika
    Palanisamy, Rajkumar
    Rengapillai, Subadevi
    Marimuthu, Sivakumar
    Kisoo, Yoo
    Jinho, Kim
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (27)
  • [40] Soybean Root-Derived Hierarchical Porous Carbon as Electrode Material for High-Performance Supercapacitors in Ionic Liquids
    Guo, Nannan
    Li, Min
    Wang, Yong
    Sun, Xingkai
    Wang, Feng
    Yang, Ru
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (49) : 33626 - 33634