A high correlate and simplified QSPR for viscosity of imidazolium-based ionic liquids

被引:60
|
作者
Chen, Bor-Kuan [1 ]
Liang, Ming-Jyh [1 ]
Wu, Tzi-Yi [2 ]
Wang, H. Paul [3 ]
机构
[1] Kun Shan Univ, Dept Mat Engn, Tainan 71003, Taiwan
[2] Natl Yunlin Univ Sci & Technol, Dept Chem & Mat Engn, Yunlin 64002, Taiwan
[3] Natl Cheng Kung Univ, Dept Environm Engn, Tainan 70101, Taiwan
关键词
Ionic liquid; QSPR; Viscosity; Imidazole; Group contribution; PRESSURE-DEPENDENCE; PHYSICOCHEMICAL PROPERTIES; THERMOPHYSICAL PROPERTIES; TRANSPORT-PROPERTIES; MELTING-POINTS; TEMPERATURE; DENSITY; CONDUCTIVITY; MIXTURES; HEXAFLUOROPHOSPHATE;
D O I
10.1016/j.fluid.2013.04.009
中图分类号
O414.1 [热力学];
学科分类号
摘要
Viscosity is an important physical property of ionic liquids (ILs). The viscosities of ILs are relatively high, when compared to those of common organic solvents. It is known that the viscosities of ILs vary widely depending on the type of cation and anion present. A high correlate and simplified quantitative structure-property relationships (QSPR) would offer a prediction possibility of viscosity for the design of new ILs. This study aimed to develop a simplified prediction model for viscosity of imidazolium-based ILs using QSPR coupled with the descriptors of group contribution. Considering temperature, molecular weight, and the number of the branched-chain carbon atoms in the imidazole ring, we formulated a mathematical relationship between the viscosity of imidazolium-based ILs and the descriptive parameters of anions and cations. The importance of molecular weight on the viscosity of imidazolium-based ILs was reflected in our group contribution method QSPR as a novel parameter. The correlation coefficient between the reported literature values and the predicted values of viscosity was R-2 = 0.9888. By performing QSPR, we hope to accelerate the development process of new imidazolium-based ILs with desired viscosity. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 42
页数:6
相关论文
共 50 条
  • [41] Sorption of imidazolium-based ionic liquids to aquatic sediments
    Beaulieu, J. J.
    Tank, J. L.
    Kopacz, M.
    CHEMOSPHERE, 2008, 70 (07) : 1320 - 1328
  • [42] Thermophysical Properties of Imidazolium-Based Lipidic Ionic Liquids
    Murray, Samuel M.
    Zimlich, T. Kyle
    Mirjafari, Arsalan
    O'Brien, Richard A.
    Davis, James H., Jr.
    West, Kevin N.
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2013, 58 (06): : 1516 - 1522
  • [43] Influence of imidazolium-based ionic liquids on coal oxidation
    Zhang, Weiqing
    Jiang, Shuguang
    Wu, Zhengyan
    Wang, Kai
    Shao, Hao
    Qin, Tong
    Xi, Xian
    Tian, Hongbo
    FUEL, 2018, 217 : 529 - 535
  • [44] Bicyclic imidazolium-based ionic liquids: synthesis and characterization
    Kan, Huang-Chuan
    Tseng, Ming-Chung
    Chu, Yen-Ho
    TETRAHEDRON, 2007, 63 (07) : 1644 - 1653
  • [45] Absorption of ethylene dichloride with imidazolium-based ionic liquids
    Wang, Zeqi
    Wu, Yidan
    Cao, Zidan
    Li, Yu
    Bai, Yinge
    Zhang, Xiangping
    Li, Tao
    Ren, Baozeng
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 376
  • [46] Distributed Polarizability Models for Imidazolium-Based Ionic Liquids
    Millot, Claude
    Chaumont, Alain
    Engler, Etienne
    Wipff, Georges
    JOURNAL OF PHYSICAL CHEMISTRY A, 2014, 118 (38): : 8842 - 8851
  • [47] Solubility of Diosgenin in Several Imidazolium-Based Ionic Liquids
    Ge, Li
    Guo, Liangchi
    Yang, Kedi
    Tao, Kejia
    Su, Jing
    Long, Yunfei
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2015, 60 (01): : 11 - 15
  • [48] CONFORMATIONAL STABILITY OF INSULIN IN IMIDAZOLIUM-BASED IONIC LIQUIDS
    Guncheva, M.
    Paunova, K.
    Yancheva, D.
    Svinyarov, I.
    Bogdanov, M.
    JOURNAL OF PEPTIDE SCIENCE, 2014, 20 : S192 - S192
  • [49] On the Mechanism of Solvation Dynamics in Imidazolium-Based Ionic Liquids
    Terranova, Z. L.
    Corcelli, S. A.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (49): : 15659 - 15666
  • [50] Electrolytic Conductivity of Four Imidazolium-Based Ionic Liquids
    Calado, Marta S.
    Diogo, Joao C. F.
    Correia da Mata, Jose L.
    Caetano, Fernando J. P.
    Visak, Zoran P.
    Fareleira, Joao M. N. A.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2013, 34 (07) : 1265 - 1279