Stochastic model for supersymmetric particle branching process

被引:0
|
作者
Zhang, Yuanyuan [1 ]
Chan, Aik Hui [1 ]
Oh, Choo Hiap [1 ]
机构
[1] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3,Block S12, Singapore 117542, Singapore
关键词
Supersymmetric parton branching; multiplicity distribution; stochastic branching process; QCD JETS;
D O I
10.1142/S0217732317500201
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We develop a stochastic branching model to describe the jet evolution of supersymmetric (SUSY) particles. This model is a modified two-phase branching process, or more precisely, a two-phase simple birth process plus Poisson process. Both pure SUSY partons initiated jets and SUSY plus ordinary partons initiated jets scenarios are considered. The stochastic branching equations are established and the Multiplicity Distributions (MDs) are derived for these two scenarios. We also fit the distribution of the general case (SUSY plus ordinary partons initiated jets) with experimental data. The fitting shows the SUSY particles have not participated in branching at current collision energy yet.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Branching process in a stochastic extremal model
    Manna, S. S.
    PHYSICAL REVIEW E, 2009, 80 (02):
  • [2] A stochastic model for cancer metastasis: Branching stochastic process with settlement
    Frei C.
    Hillen T.
    Rhodes A.
    Mathematical Medicine and Biology, 2020, 37 (02) : 153 - 182
  • [3] A stochastic model for cancer metastasis: branching stochastic process with settlement
    Frei, Christoph
    Hillen, Thomas
    Rhodes, Adam
    MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2020, 37 (02): : 153 - 182
  • [4] A BIOLOGICAL AND COMPUTATIONAL MODEL OF MEGAKARYOCYTE DEVELOPMENT AS A STOCHASTIC BRANCHING-PROCESS
    SOLBERG, LA
    INTERNATIONAL JOURNAL OF CELL CLONING, 1990, 8 (04): : 283 - 290
  • [5] CORRELATED FLUCTUATIONS IN MULTIELEMENT SYSTEMS - THE STOCHASTIC-BRANCHING-PROCESS MODEL
    BERLIN, YA
    DROBNITSKY, DO
    GOLDANSKII, VI
    KUZMIN, VV
    PHYSICAL REVIEW A, 1992, 45 (06): : 3547 - 3552
  • [6] ON A STOCHASTIC INTEGRAL OF A BRANCHING-PROCESS
    UDAYABASKARAN, S
    SUDALAIYANDI, G
    JOURNAL OF MATHEMATICAL BIOLOGY, 1986, 24 (04) : 467 - 472
  • [7] Convergence rate of a branching stochastic particle method
    Régnier, H
    Talay, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (10): : 933 - 938
  • [8] Immortal particle for a catalytic branching process
    Ilie Grigorescu
    Min Kang
    Probability Theory and Related Fields, 2012, 153 : 333 - 361
  • [9] Supersymmetric theory of stochastic ABC model
    Ovchinnikov, Igor V.
    Sun, Yuquan
    Ensslin, Torsten A.
    Wang, Kang L.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2018, 2 (06):
  • [10] Immortal particle for a catalytic branching process
    Grigorescu, Ilie
    Kang, Min
    PROBABILITY THEORY AND RELATED FIELDS, 2012, 153 (1-2) : 333 - 361