COVID-19 Prediction With Machine Learning Technique From Extracted Features of Photoplethysmogram Morphology

被引:1
|
作者
Nayan, Nazrul Anuar [1 ,2 ]
Yi, Choon Jie [1 ]
Suboh, Mohd Zubir [1 ]
Mazlan, Nur-Fadhilah [3 ]
Periyasamy, Petrick [4 ]
Rahim, Muhammad Yusuf Zawir Abdul [4 ]
Shah, Shamsul Azhar [5 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Engn & Built Environm, Bangi, Malaysia
[2] Univ Kebangsaan Malaysia, Inst Islam Hadhari, Bangi, Malaysia
[3] Univ Kebangsaan Malaysia, Inst Environm & Dev, Bangi, Malaysia
[4] Hosp Canselor Tuanku Muhriz, UKM Med Ctr, Cheras, Malaysia
[5] UKM Med Ctr, Fac Med, Cheras, Malaysia
关键词
COVID-19; photoplethysmogram; machine learning; non-invasive; diagnostic; prediction; CLASSIFICATION;
D O I
10.3389/fpubh.2022.920849
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
At present, COVID-19 is spreading widely around the world. It causes many health problems, namely, respiratory failure and acute respiratory distress syndrome. Wearable devices have gained popularity by allowing remote COVID-19 detection, contact tracing, and monitoring. In this study, the correlation of photoplethysmogram (PPG) morphology between patients with COVID-19 infection and healthy subjects was investigated. Then, machine learning was used to classify the extracted features between 43 cases and 43 control subjects. The PPG data were collected from 86 subjects based on inclusion and exclusion criteria. The systolic-onset amplitude was 3.72% higher for the case group. However, the time interval of systolic-systolic was 7.69% shorter in the case than in control subjects. In addition, 12 out of 20 features exhibited a significant difference. The top three features included dicrotic-systolic time interval, onset-dicrotic amplitude, and systolic-onset time interval. Nine features extracted by heatmap based on the correlation matrix were fed to discriminant analysis, k-nearest neighbor, decision tree, support vector machine, and artificial neural network (ANN). The ANN showed the best performance with 95.45% accuracy, 100% sensitivity, and 90.91% specificity by using six input features. In this study, a COVID-19 prediction model was developed using multiple PPG features extracted using a low-cost pulse oximeter.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Prediction of COVID-19 severity using machine learning
    Karaduzovic-Hadziabdic, Kanita
    Adilovic, Muhamed
    Zhang, Lu
    Lumley, Andrew, I
    Shah, Pranay
    Shoaib, Muhammad
    Satagopam, Venkata
    Srivastava, Prashant Kumar
    Emanueli, Costanza
    Greco, Simona
    Made, Alisia
    Padro, Teresa
    Domingo, Pedro
    Lustrek, Mitja
    Scholz, Markus
    Rosolowski, Maciej
    Jordan, Marko
    Benczik, Bettina
    Agg, Bence
    Ferdinandy, Peter
    Baker, Andrew H.
    Fagherazzi, Guy
    Ollert, Markus
    Michel, Joanna
    Sanchez, Gabriel
    Firat, Hueseyin
    Brandenburger, Timo
    Martelli, Fabio
    Badimon, Lina
    Devaux, Yvan
    CLINICAL AND TRANSLATIONAL MEDICINE, 2024, 14 (10):
  • [12] Analysis and Prediction of COVID-19 using Machine Learning
    Parthiban, M.
    Alphy, Anna
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [13] Machine and Deep Learning Algorithms for COVID-19 Mortality Prediction Using Clinical and Radiomic Features
    Verzellesi, Laura
    Botti, Andrea
    Bertolini, Marco
    Trojani, Valeria
    Carlini, Gianluca
    Nitrosi, Andrea
    Monelli, Filippo
    Besutti, Giulia
    Castellani, Gastone
    Remondini, Daniel
    Milanese, Gianluca
    Croci, Stefania
    Sverzellati, Nicola
    Salvarani, Carlo
    Iori, Mauro
    ELECTRONICS, 2023, 12 (18)
  • [14] COVID-19 Mortality Prediction Using Machine Learning Techniques
    Schirato, Lindsay
    Makina, Kennedy
    Flanders, Dwayne
    Pouriyeh, Seyedamin
    Shahriar, Hossain
    2021 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH (ICDH 2021), 2021, : 197 - 202
  • [15] Supervised Machine Learning-Based Prediction of COVID-19
    Atta-ur-Rahman
    Sultan, Kiran
    Naseer, Iftikhar
    Majeed, Rizwan
    Musleh, Dhiaa
    Gollapalli, Mohammed Abdul Salam
    Chabani, Sghaier
    Ibrahim, Nehad
    Siddiqui, Shahan Yamin
    Khan, Muhammad Adnan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (01): : 21 - 34
  • [16] Analysis and prediction of COVID-19 trajectory: A machine learning approach
    Majhi, Ritanjali
    Thangeda, Rahul
    Sugasi, Renu Prasad
    Kumar, Niraj
    JOURNAL OF PUBLIC AFFAIRS, 2021, 21 (04)
  • [17] COVID-19 Outbreak Prediction by Using Machine Learning Algorithms
    Sher, Tahir
    Rehman, Abdul
    Kim, Dongsun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 1561 - 1574
  • [18] Analysis and Prediction of COVID-19 in Xinjiang based on Machine Learning
    Liu, Yunxiang
    Xiao, Yan
    2020 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, COMPUTER TECHNOLOGY AND TRANSPORTATION (ISCTT 2020), 2020, : 382 - 385
  • [19] A Novel Machine Learning based Model for COVID-19 Prediction
    Mazen, Tamer Sh
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (11) : 523 - 531
  • [20] A Novel Machine Learning based Model for COVID-19 Prediction
    Sh. Mazen T.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (11): : 523 - 531