Kinetics of the two-dimensional long-range Ising model at low temperatures

被引:12
|
作者
Agrawal, Ramgopal [1 ]
Corberi, Federico [2 ,3 ,4 ]
Lippiello, Eugenio [5 ]
Politi, Paolo [6 ,7 ]
Puri, Sanjay [1 ]
机构
[1] Jawaharlal Nehru Univ, Sch Phys Sci, New Delhi 110067, India
[2] Univ Salerno, Dipartimento Fis ER Caianiello, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
[3] Univ Salerno, Ist Nazl Fis Nucl, Grp Collegato Salerno, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
[4] Univ Salerno, CNISM, Unita Salerno, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
[5] Univ Campania, Dipartimento Matemat & Fis, Viale Lincoln 5, I-81100 Caserta, Italy
[6] CNR, Ist Sistemi Complessi, Via Madonna Piano 10, I-50019 Sesto Fiorentino, Tuscany, Italy
[7] Ist Nazl Fis Nucl, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Tuscany, Italy
关键词
Temperature - Monte Carlo methods - Growth kinetics - Intelligent systems;
D O I
10.1103/PhysRevE.103.012108
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the low-temperature domain growth kinetics of the two-dimensional Ising model with long-range coupling J(r) similar to r(-(d+sigma)), where d = 2 is the dimensionality. According to the Bray-Rutenberg predictions, the exponent sigma controls the algebraic growth in time of the characteristic domain size L(t), L(t) similar to t(1/z), with growth exponent z = 1 + sigma for sigma < 1 and z = 2 for sigma > 1. These results hold for quenches to a nonzero temperature T > 0 below the critical temperature T-c. We show that, in the case of quenches to T = 0, due to the long-range interactions, the interfaces experience a drift which makes the dynamics of the system peculiar. More precisely, we find that in this case the growth exponent takes the value z = 4/3, independently of sigma, showing that it is a universal quantity. We support our claim by means of extended Monte Carlo simulations and analytical arguments for single domains.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Long-range geometrical correlations in two-dimensional foams
    Dubertret, B
    Rivier, N
    Peshkin, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (03): : 879 - 900
  • [22] A note on two-dimensional truncated long-range percolation
    Menshikov, M
    Sidoravicius, V
    Vachkovskaia, M
    ADVANCES IN APPLIED PROBABILITY, 2001, 33 (04) : 912 - 929
  • [23] The low-energy states and directional long-range order in the two-dimensional quantum compass model
    You, Wen-Long
    Tian, Guang-Shan
    Lin, Hai-Qing
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (27)
  • [24] METASTABILITY IN A LONG-RANGE ONE-DIMENSIONAL ISING-MODEL
    MCCRAW, RJ
    PHYSICS LETTERS A, 1980, 75 (05) : 379 - 382
  • [25] Lack of long-range order in confined two-dimensional model colloidal crystals
    Ricci, A.
    Nielaba, P.
    Sengupta, S.
    Binder, K.
    PHYSICAL REVIEW E, 2006, 74 (01):
  • [26] Superconducting correlations in the two-dimensional Hubbard model with long-range electron hopping
    Farkasovsky, Pavol
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2022, 602
  • [27] Striped phases in the two-dimensional Hubbard model with long-range Coulomb interaction
    Seibold, G
    Castellani, C
    Di Castro, C
    Grilli, M
    PHYSICAL REVIEW B, 1998, 58 (20) : 13506 - 13509
  • [28] Critical behavior of the two-dimensional Anderson model with long-range correlated disorder
    dos Santos, I. F.
    de Moura, F. A. B. F.
    Lyra, M. L.
    Coutinho-Filho, M. D.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (47)
  • [29] GROUND-STATE LONG-RANGE ORDER IN THE TWO-DIMENSIONAL XXZ MODEL
    NISHIMORI, H
    OZEKI, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1989, 58 (03) : 1027 - 1030
  • [30] Semiclassical dynamics of a disordered two-dimensional Hubbard model with long-range interactions
    Sajna, Adam S.
    Polkovnikov, Anatoli
    PHYSICAL REVIEW A, 2020, 102 (03)