Existence for a semilinear sixth-order ODE

被引:13
|
作者
Gyulov, Tihomir
Morosanu, Gheorghe
Tersian, Stepan
机构
[1] Univ Rousse, Ctr Appl Math & Informat, Rousse 7017, Bulgaria
[2] Cent European Univ, Dept Math & Its Applicat, H-1051 Budapest, Hungary
关键词
semilinear sixth-order ODE; variational method; Brezis-Nirenberg's linking theorems;
D O I
10.1016/j.jmaa.2005.08.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence and multiplicity of nontrivial solutions for a boundary value problem associated with a semilinear sixth-order ordinary differential equation arising in the study of spatial patterns. Our treatment is based on variational tools, including two Brezis-Nirenberg's linking theorems. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:86 / 98
页数:13
相关论文
共 50 条
  • [41] LIAPUNOV FUNCTION OF A SIXTH-ORDER NONLINEAR SYSTEM
    KU, YH
    PROCEEDINGS OF THE IEEE, 1969, 57 (01) : 91 - &
  • [42] New Sixth-Order Improvements of the Jarratt Method
    Kim, Yongil
    KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (01): : 7 - 14
  • [43] SIXTH-ORDER MAGNETIC-MOMENT OF ELECTRON
    CVITANOVIC, P
    KINOSHITA, T
    PHYSICAL REVIEW D, 1974, 10 (12): : 4007 - 4031
  • [44] Analysis of a Sixth-Order Higher Bucking Converter
    Misal, Shrikant
    Veerachary, M.
    2017 4TH IEEE UTTAR PRADESH SECTION INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ELECTRONICS (UPCON), 2017, : 410 - 415
  • [45] A new sixth-order scheme for nonlinear equations
    Chun, Changbum
    Neta, Beny
    APPLIED MATHEMATICS LETTERS, 2012, 25 (02) : 185 - 189
  • [46] Modified Jarratt method with sixth-order convergence
    Wang, Xiuhua
    Kou, Jisheng
    Li, Yitian
    APPLIED MATHEMATICS LETTERS, 2009, 22 (12) : 1798 - 1802
  • [47] ON THE SOLVABLE OF NONLINEAR DIFFERENCE EQUATION OF SIXTH-ORDER
    Yazlik, Yasin
    Gungor, Mumet
    JOURNAL OF SCIENCE AND ARTS, 2019, (02): : 399 - 414
  • [48] ON A SOLVABLE SYSTEM OF DIFFERENCE EQUATIONS OF SIXTH-ORDER
    Karakaya, Dilek
    Yazlik, Yasin
    Kara, Merve
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (03) : 1405 - 1426
  • [49] A family of sixth-order methods with six stages
    Olemskoy, I. V.
    Kovrizhnykh, N. A.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2018, 14 (03): : 215 - 229
  • [50] CONTRIBUTION TO SIXTH-ORDER ELECTRON AND MUON ANOMALIES
    BILLI, D
    CAFFO, M
    REMIDDI, E
    LETTERE AL NUOVO CIMENTO, 1972, 4 (14): : 657 - &