Decomposition and Equilibrium Achieving Distribution Locational Marginal Prices Using Trust-Region Method

被引:41
|
作者
Hanif, Sarmad [1 ]
Zhang, Kai [1 ]
Hackl, Christoph M. [2 ,3 ]
Barati, Masoud [4 ]
Gooi, Hoay Beng [5 ]
Hamacher, Thomas [6 ]
机构
[1] TUMCREATE, Electrificat Suite & Test Lab, Singapore, Singapore
[2] Tech Univ Munich, Munich Univ Appl Sci, D-85748 Munich, Germany
[3] Tech Univ Munich, CRES Res Grp, D-85748 Munich, Germany
[4] Louisiana State Univ, Dept Elect & Comp Engn, Baton Rouge, LA 70803 USA
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[6] Tech Univ Munich, Renewable & Sustainable Energy Syst, D-85748 Munich, Germany
基金
新加坡国家研究基金会;
关键词
Distribution locational marginal prices (DLMPs); linearization; market equilibrium; trust-region; distributed generators (DGs); flexible loads (FLs); POWER; OPTIMIZATION; GENERATION; CAPACITORS;
D O I
10.1109/TSG.2018.2822766
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a new distribution locational marginal price (DLMP) model which is based on a linearized variant of the global energy balance formulation along with trust-region-based solution methodology. Compared to existing DLMP works in the literature, the proposed DLMP model has shown to depict the following features: 1) it decomposes into most general components, i.e., energy, loss, congestion, and voltage; 2) it presents market equilibrium conditions; and 3) it is capable of achieving an efficient flexibility resource allocation in local day-ahead distribution grid markets. The developed model is tested first on a benchmark IEEE 33-bus distribution grid and then on much larger grids with the inclusion of dispatch from flexible loads and distributed generators.
引用
收藏
页码:3269 / 3281
页数:13
相关论文
共 50 条
  • [21] Using the Newton Trust-Region Method to Localize in WLAN Environment
    Chan, Eddie C. L.
    Baciu, George
    Mak, S. C.
    2009 IEEE INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS, 2009, : 363 - 369
  • [22] Stochastic optimization using a trust-region method and random models
    R. Chen
    M. Menickelly
    K. Scheinberg
    Mathematical Programming, 2018, 169 : 447 - 487
  • [23] Nash Mechanisms for Market Design Based on Distribution Locational Marginal Prices
    Zhong, Weifeng
    Xie, Kan
    Liu, Yi
    Xie, Shengli
    Xie, Lihua
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (06) : 4297 - 4309
  • [24] IMPROVED NONMONOTONE ADAPTIVE TRUST-REGION METHOD TO SOLVE GENERALIZED NASH EQUILIBRIUM PROBLEMS
    Singh, Abhishek
    Kumar, Krishan
    Ghosh, Debdas
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (01) : 11 - 29
  • [25] A Privacy-preserving Decentralized Algorithm for Distribution Locational Marginal Prices
    Bilenne, Olivier
    Franci, Barbara
    Jacquot, Paulin
    Oudjane, Nadia
    Staudigl, Mathias
    Wan, Cheng
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 4143 - 4148
  • [26] Outer Trust-Region Method for Constrained Optimization
    Ernesto G. Birgin
    Emerson V. Castelani
    André L. M. Martinez
    J. M. Martínez
    Journal of Optimization Theory and Applications, 2011, 150
  • [27] An implicit trust-region method on Riemannian manifolds
    Baker, C. G.
    Absil, P. -A.
    Gallivan, K. A.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (04) : 665 - 689
  • [28] A BFGS trust-region method for nonlinear equations
    Yuan, Gonglin
    Wei, Zengxin
    Lu, Xiwen
    COMPUTING, 2011, 92 (04) : 317 - 333
  • [29] A retrospective trust-region method for unconstrained optimization
    Fabian Bastin
    Vincent Malmedy
    Mélodie Mouffe
    Philippe L. Toint
    Dimitri Tomanos
    Mathematical Programming, 2010, 123 : 395 - 418
  • [30] A SUBSPACE MINIMIZATION METHOD FOR THE TRUST-REGION STEP
    Erway, Jennifer B.
    Gill, Philip E.
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (03) : 1439 - 1461