Fluid dynamical systems as Hamiltonian boundary control systems

被引:0
|
作者
van der Schaft, AJ [1 ]
Maschke, BM [1 ]
机构
[1] Univ Twente, Fac Math Sci, NL-7500 AE Enschede, Netherlands
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is shown how the geometric framework for distributed-parameter port-controlled Hamiltonian systems as recently provided in [11, 12] can be adapted to formulate ideal isentropic compressible fluids with non-zero energy flow through the boundary of the spatial domain as Hamiltonian boundary control systems. The key ingredient is the modification of the Stokes-Dirac structure introduced in [11] to a Dirac structure defined on the space of mass density 3-forms and velocity 1-forms, incorporating three-dimensional convection. Some initial steps towards stabilization of these boundary control systems, based on the generation of Casimir functions for the closed-loop Hamiltonian system, are discussed.
引用
收藏
页码:4497 / 4502
页数:6
相关论文
共 50 条
  • [21] Hamiltonian structure for dispersive and dissipative dynamical systems
    Figotin, Alexander
    Schenker, Jeffrey H.
    JOURNAL OF STATISTICAL PHYSICS, 2007, 128 (04) : 969 - 1056
  • [22] On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems
    Macchelli, Alessandro
    Le Gorrec, Yann
    Ramirez, Hector
    Zwart, Hans
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (04) : 1700 - 1713
  • [23] Bifurcations and dynamical evolution of eigenvalues of Hamiltonian systems
    Hsiao, FY
    Scheeres, DJ
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 213 (01) : 66 - 75
  • [24] Dynamical reduced basis methods for Hamiltonian systems
    Pagliantini, Cecilia
    NUMERISCHE MATHEMATIK, 2021, 148 (02) : 409 - 448
  • [25] Hamiltonian Structure for Dispersive and Dissipative Dynamical Systems
    Alexander Figotin
    Jeffrey H. Schenker
    Journal of Statistical Physics, 2007, 128 : 969 - 1056
  • [26] Design of dynamical controllers for electromechanical Hamiltonian systems
    Haas, W
    Schlacher, K
    ROBUST CONTROL DESIGN 2000, VOLS 1 & 2, 2000, 1-2 : 763 - 768
  • [27] On backstepping boundary control for a class of linear port-Hamiltonian systems
    Ramirez, Hector
    Zwart, Hans
    Le Gorrec, Yann
    Macchelli, Alessandro
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [28] Dynamical reduced basis methods for Hamiltonian systems
    Cecilia Pagliantini
    Numerische Mathematik, 2021, 148 : 409 - 448
  • [29] Hamiltonian formalism for fiberwise linear dynamical systems
    Espinoza, RF
    Vorobjev, Y
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2000, 6 (02): : 213 - 234
  • [30] Λ-symmetries of dynamical systems, Hamiltonian and Lagrangian equations
    Cicogna, Giampaolo
    GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS AND INTEGRABLE SYSTEM, 5TH INTERNATIONAL WORKSHOP, 2011, : 47 - 60