An extension theorem for planar semimodular lattices

被引:9
|
作者
Graetzer, G. [1 ]
Schmidt, E. T. [2 ]
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
[2] Budapest Univ Technol & Econ, Math Inst, H-1521 Budapest, Hungary
关键词
Principal congruence; Order; Semimodular; Rectangular; ARGUESIAN LATTICES; CONGRUENCES;
D O I
10.1007/s10998-014-0035-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that every finite distributive lattice can be represented as the congruence lattice of a rectangular lattice in which all congruences are principal. We verify this result in a stronger form as an extension theorem.
引用
收藏
页码:32 / 40
页数:9
相关论文
共 50 条
  • [41] STRONGNESS IN SEMIMODULAR LATTICES
    STERN, M
    DISCRETE MATHEMATICS, 1990, 82 (01) : 79 - 88
  • [42] Semimodular Lattices and Semibuildings
    David Samuel Herscovici
    Journal of Algebraic Combinatorics, 1998, 7 : 39 - 51
  • [43] SEMIHOMOMORHIISMS OF SEMIMODULAR LATTICES
    PFALTZ, JL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 22 (02) : 418 - &
  • [44] Congruence lattices of finite semimodular lattices
    Gratzer, G
    Lakser, H
    Schmidt, ET
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (03): : 290 - 297
  • [45] ON THE NUMBER OF SLIM, SEMIMODULAR LATTICES
    Czedli, Gabor
    Dekany, Tamas
    Ozsvart, Laszlo
    Szakacs, Nora
    Udvari, Balazs
    MATHEMATICA SLOVACA, 2016, 66 (01) : 5 - 18
  • [46] Cover-preserving embeddings of finite length semimodular lattices into simple semimodular lattices
    Schmidt, E. Tamas
    ALGEBRA UNIVERSALIS, 2010, 64 (1-2) : 101 - 102
  • [47] Swing Lattice Game and a direct proof of the Swing Lemma for planar semimodular lattices
    Czédli G.
    Makay G.
    Acta Scientiarum Mathematicarum, 2017, 83 (1-2): : 13 - 29
  • [48] Cover-preserving embeddings of finite length semimodular lattices into simple semimodular lattices
    E. Tamás Schmidt
    Algebra universalis, 2010, 64 : 101 - 102
  • [49] A GENERALIZATION OF SEMIMODULAR SUPERSOLVABLE LATTICES
    BENNETT, C
    SAGAN, BE
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1995, 72 (02) : 209 - 231
  • [50] CONSISTENT DUALLY SEMIMODULAR LATTICES
    GRAGG, KM
    KUNG, JPS
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1992, 60 (02) : 246 - 263