Numerical simulation of supersonic mixing layers for parallel and non-parallel streams

被引:1
|
作者
Ali, Mohammad [1 ]
Islam, M. Quamrul [1 ]
Jubery, Tagmzn [1 ]
Amin, Sanchita [1 ]
机构
[1] Bangladesh Univ Engn & Technol, Dhaka 1000, Bangladesh
关键词
Supersonic combustor; mixing; shear layers; merging angle;
D O I
10.1016/j.proeng.2013.03.106
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this study supersonic mixing of two-parallel and non parallel gaseous streams has been simulated numerically. The streams are of air and hydrogen, which come into contact after passing over a finite thickness base. Two gas streams are considered from a high-pressure reservoir and entering into the domain with atmospheric pressure. Two-dimensional unsteady state Navier-Stokes equations, energy, mass diffusion and species continuity equations are numerically simulated to analyze the two-dimensional mixing layer in supersonic flow field. An explicit Harten-Yee Non-MUSCL Modified flux-type TVD (total variation diminishing) scheme has been used to solve the system of equations. An algebraic turbulence model is used to calculate the eddy viscosity coefficient. Keeping constant the inlet pressure and velocity of the streams, the merging angle is varied to observe the physics of flow fields, mixing fields of two-streams and mixing efficiency. The result shows that when merging angle increases interaction between two streams, high momentum exchange occurs and eventually enhances the mixing of two streams. (C) 2012 The authors, Published by Elsevier Ltd.
引用
收藏
页码:187 / 192
页数:6
相关论文
共 50 条