Ising model on random networks and the canonical tensor model

被引:17
|
作者
Sasakura, Naoki [1 ]
Sato, Yuki [2 ,3 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[2] Univ Witwatersrand, Natl Inst Theoret Phys, Dept Phys, ZA-2050 Johannesburg, South Africa
[3] Univ Witwatersrand, Ctr Theoret Phys, ZA-2050 Johannesburg, South Africa
来源
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS | 2014年 / 2014卷 / 05期
关键词
SIMPLICIAL QUANTUM-GRAVITY; LATTICE;
D O I
10.1093/ptep/ptu049
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a statistical system on random networks of trivalent vertices for the purpose of studying the canonical tensor model, which is a rank-three tensor model in the canonical formalism. The partition function of the statistical system has a concise expression in terms of integrals, and has the same symmetries as the kinematical ones of the canonical tensor model. We consider the simplest non-trivial case of the statistical system corresponding to the Ising model on random networks, and find that its phase diagram agrees with what is implied by regrading the Hamiltonian vector field of the canonical tensor model with N=2 as a renormalization group flow. Along the way, we obtain an explicit exact expression of the free energy of the Ising model on random networks in the thermodynamic limit by the Laplace method. This paper provides a new example connecting a model of quantum gravity and a random statistical system.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Chaos in the random field Ising model
    Alava, M
    Rieger, H
    PHYSICAL REVIEW E, 1998, 58 (04): : 4284 - 4287
  • [22] Ising model for distribution networks
    Hooyberghs, H.
    Van Lombeek, S.
    Giuraniuc, C.
    Van Schaeybroeck, B.
    Indekeu, J. O.
    PHILOSOPHICAL MAGAZINE, 2012, 92 (1-3) : 168 - 191
  • [23] On the Ising Model with Random Boundary Condition
    A. C. D. van. Enter
    K. Netočný
    H. G. Schaap
    Journal of Statistical Physics, 2005, 118 : 997 - 1056
  • [24] A RANDOM DECORATED ISING-MODEL
    HANUSIK, V
    MARKO, P
    ACTA PHYSICA SLOVACA, 1981, 31 (05) : 273 - 278
  • [25] Chaos in the random field Ising model
    Phys Rev E., 4 (4284):
  • [26] SOLUTION OF A RANDOM ISING-MODEL
    THORPE, MF
    BEEMAN, D
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (03): : 231 - 231
  • [27] On the Ising model with random boundary condition
    van Enter, ACD
    Netocny, K
    Schaap, HG
    JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (5-6) : 997 - 1056
  • [28] THE RANDOM FIELD ISING-MODEL
    BELANGER, DP
    YOUNG, AP
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1991, 100 (1-3) : 272 - 291
  • [29] A classical model correspondence for G-symmetric random tensor networks
    Morgan, Erica
    Brandao, Fernando G. S. L.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (10):
  • [30] UNIQUENESS OF CANONICAL TENSOR MODEL WITH LOCAL TIME
    Sasakura, Naoki
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2012, 27 (18):