A Computational Complexity Measure for Trellis Modules of Convolutional Codes

被引:0
|
作者
Benchimol, Isaac B. [1 ]
Pimentel, Cecilio [2 ]
Souza, Richard Demo [3 ]
Uchoa-Filho, Bartolomeu F. [4 ]
机构
[1] Fed Inst Amazonas IFAM, CMDI, Manaus, Amazonas, Brazil
[2] UTFPR, CODEC DES, Recife, PE, Brazil
[3] UTFPR, CPGEI, Curitiba, Parana, Brazil
[4] Univ Fed Santa Catarina, GPqCom EEL, Florianopolis, SC, Brazil
来源
2013 36TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP) | 2013年
关键词
Convolutional codes; decoding complexity; trellis module; Viterbi algorithm;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a computational complexity measure of convolutional codes well suitable for software implementations of the Viterbi algorithm (VA) operating with hard decision. We investigate the number of arithmetic operations performed by the decoding process over the conventional and minimal trellis modules. The computational cost of implementation of each operation is determined in terms of machine cycles taken by its execution. A relation between the complexity measure defined in this work and the one defined by McEliece and Lin is investigated. The system architecture adopted is the TMS320C55xx fixed-point digital signal processor family from Texas Instruments.
引用
收藏
页码:144 / 148
页数:5
相关论文
共 50 条
  • [41] ON COMPLEXITY OF TRELLIS STRUCTURE OF LINEAR BLOCK-CODES
    KASAMI, T
    TAKATA, T
    FUJIWARA, T
    LIN, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) : 1057 - 1064
  • [42] TRELLIS-ORIENTED DECOMPOSITION AND TRELLIS COMPLEXITY OF COMPOSITE-LENGTH CYCLIC CODES
    BERGER, Y
    BEERY, Y
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (04) : 1185 - 1191
  • [43] Minimal Trellis Construction for Finite Support Convolutional Ring Codes
    Kuijper, Margreta
    Pinto, Raquel
    CODING THEORY AND APPLICATIONS, PROCEEDINGS, 2008, 5228 : 95 - 106
  • [44] Decoding of High Rate Convolutional Codes Using the Dual Trellis
    Srinivasan, Sudharshan
    Pietrobon, Steven S.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (01) : 273 - 295
  • [45] On Convolutional Lattice Codes and Lattice Decoding Using Trellis Structure
    Molu, Mehdi M.
    Cumanan, Kanapathippillai
    Bashar, Manijeh
    Burr, Alister
    IEEE ACCESS, 2016, 4 : 9702 - 9715
  • [46] Convolutional codes with low decoding complexity
    Tatung Company, Taipei 104, Taiwan
    不详
    Harbin Gongye Daxue Xuebao, 2008, SUPPL. (118-121):
  • [47] CHARACTERIZATIONS AND COMPUTATIONAL-COMPLEXITY OF SYSTOLIC TRELLIS AUTOMATA
    IBARRA, OH
    KIM, SM
    THEORETICAL COMPUTER SCIENCE, 1984, 29 (1-2) : 123 - 153
  • [48] The Preparata and Goethals codes: Trellis complexity and twisted squaring constructions
    Shany, Y
    Be'ery, Y
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (05) : 1667 - 1673
  • [49] Interleaver properties and their applications to the trellis complexity analysis of turbo codes
    Garello, R
    Montorsi, G
    Benedetto, S
    Cancellieri, G
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2001, 49 (05) : 793 - 807
  • [50] ON THE TRELLIS COMPLEXITY OF CERTAIN BINARY LINEAR BLOCK-CODES
    YTREHUS, O
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (02) : 559 - 560