Solid-state light-phase detector

被引:0
|
作者
Paasch-Colberg, Tim [1 ]
Schiffrin, Agustin [1 ]
Karpowicz, Nicholas [1 ]
Kruchinin, Stanislav [1 ]
Saglam, Oezge [2 ]
Keiber, Sabine [1 ]
Razskazovskaya, Olga [1 ]
Muehlbrandt, Sascha [1 ]
Alnaser, Ali [1 ,3 ,4 ]
Kuebel, Matthias [1 ]
Apalkov, Vadym [5 ]
Gerster, Daniel [2 ]
Reichert, Joachim [2 ]
Wittmann, Tibor [1 ,6 ]
Barth, Johannes V. [2 ]
Stockman, Mark I. [5 ]
Ernstorfer, Ralph [7 ]
Yakovlev, Vladislav S. [1 ,6 ]
Kienberger, Reinhard [1 ,2 ]
Krausz, Ferenc [1 ,6 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
[3] Amer Univ Sharjah, Dept Phys, Sharjah, U Arab Emirates
[4] King Saud Univ, Fac Phys & Astron, Riyadh, Saudi Arabia
[5] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30340 USA
[6] Univ Munich, Fak Phys, D-85748 Garching, Germany
[7] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
关键词
ATTOSECOND CONTROL; FREQUENCY; GENERATION;
D O I
10.1038/NPHOTON.2013.348
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Attosecond science relies on the use of intense, waveform-controlled, few-cycle laser pulses(1) to control extreme nonlinear optical processes taking place within a fraction of an optical period. A number of techniques are available for retrieving the amplitude envelope and chirp of such few-cycle laser pulses. However, their full characterization requires detection of the absolute offset between the rapidly oscillating carrier wave and the pulse envelope, the carrier-envelope phase (CEP). So far, this has only been feasible with photoelectron spectroscopy, relying on complex vacuum set-ups2-4. Here, we present a technique that enables the detection of the CEP of few-cycle laser pulses under ambient conditions. This is based on the CEP-dependence of directly measurable electric currents generated by the electric field of light in a metal-dielectric-metal nanojunction. The device holds promise for routine measurement and monitoring of the CEP in attosecond laboratories.
引用
收藏
页码:214 / 218
页数:5
相关论文
共 50 条
  • [41] Solid-State Detector SPECT Myocardial Perfusion Imaging
    Slomka, Piotr J.
    Miller, Robert J. H.
    Hu, Lien-Hsin
    Germano, Guido
    Berman, Daniel S.
    JOURNAL OF NUCLEAR MEDICINE, 2019, 60 (09) : 1194 - 1204
  • [42] A scintillation γ-ray detector based on a solid-state photomultiplier
    S. M. Ignatov
    D. A. Maneuski
    V. N. Potapov
    V. M. Chirkin
    Instruments and Experimental Techniques, 2007, 50 : 474 - 478
  • [43] The physics of solid-state neutron detector materials and geometries
    Caruso, A. N.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (44)
  • [44] SENSITIVITY OF A CELLULOSE TRIACETATE SOLID-STATE TRACK DETECTOR
    PRETZSCH, G
    RADIOCHEMICAL AND RADIOANALYTICAL LETTERS, 1981, 48 (01): : 51 - 60
  • [45] Microchip capillary electrophoresis with solid-state electrochemiluminescence detector
    Du, Y
    Wei, H
    Kang, JZ
    Yan, JL
    Yin, XB
    Yang, XR
    Wang, EK
    ANALYTICAL CHEMISTRY, 2005, 77 (24) : 7993 - 7997
  • [46] Investigation of a solid-state detector for advanced computed tomography
    Hsieh, J
    Gurmen, OE
    King, KF
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2000, 19 (09) : 930 - 940
  • [47] Low-power solid-state airflow detector
    Woodward, W.S.
    2001, Penton Publishing Co. (49)
  • [48] A scintillation γ-ray detector based on a solid-state photomultiplier
    Ignatov, S. M.
    Maneuski, D. A.
    Potapov, V. N.
    Chirkin, V. M.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2007, 50 (04) : 474 - 478
  • [49] A novel solid-state self powered neutron detector
    LiCausi, Nicholas
    Dingley, Justin
    Danon, Yaron
    Lu, Jian-Qiang
    Bhat, Ishwara B.
    HARD X-RAY, GAMMA-RAY, AND NEUTRON DETECTOR PHYSICS X, 2008, 7079
  • [50] LIGHT-SCATTERING NEAR PHASE-TRANSITION POINTS IN SOLID-STATE
    GINZBURG, VI
    LEVANYUK, AP
    PHYSICS LETTERS A, 1974, A 47 (04) : 345 - 346