Global Bifurcation of Stationary Solutions for a Volume-Filling Chemotaxis Model with Logistic Growth

被引:0
|
作者
Dong, Yaying [1 ]
Li, Shanbing [2 ]
机构
[1] Xian Polytech Univ, Sch Sci, Xian 710048, Peoples R China
[2] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
来源
关键词
Chemotaxis; bifurcation; stationary solution; pattern formation; BACTERIAL RANDOM MOTILITY; PATTERNS; COEFFICIENTS; SYSTEMS; FRONTS;
D O I
10.1142/S0218127420501825
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show how the global bifurcation theory for nonlinear Fredholm operators (Theorem 4.3 of [Shi & Wang, 2009]) and for compact operators (Theorem 1.3 of [Rabinowitz, 1971]) can be used in the study of the nonconstant stationary solutions for a volume-filling chemotaxis model with logistic growth under Neumann boundary conditions. Our results show that infinitely many local branches of nonconstant solutions bifurcate from the positive constant solution (u(c), alpha/beta u(c)) at chi = (chi) over bar (k) Moreover, for each k >= 1, we prove that each Gamma(k) can be extended into a global curve, and the projection of the bifurcation curve Gamma(k) onto the chi-axis contains ((chi) over bar (k), infinity).
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Traveling wavefronts for a reaction-diffusion-chemotaxis model with volume-filling effect
    MA Man-jun
    LI Hui
    GAO Mei-yan
    TAO Ji-cheng
    HAN Ya-zhou
    AppliedMathematics:AJournalofChineseUniversities, 2017, 32 (01) : 108 - 116
  • [22] Traveling wavefronts for a reaction-diffusion-chemotaxis model with volume-filling effect
    Man-jun Ma
    Hui Li
    Mei-yan Gao
    Ji-cheng Tao
    Ya-zhou Han
    Applied Mathematics-A Journal of Chinese Universities, 2017, 32 : 108 - 116
  • [23] Traveling wavefronts for a reaction-diffusion-chemotaxis model with volume-filling effect
    Ma, Man-jun
    Li, Hui
    Gao, Mei-yan
    Tao, Ji-cheng
    Han, Ya-zhou
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2017, 32 (01) : 108 - 116
  • [24] On the efficacy of a control volume finite element method for the capture of patterns for a volume-filling chemotaxis model
    Ibrahim, Moustafa
    Saad, Mazen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (09) : 1032 - 1051
  • [25] Global existence and boundedness of classical solutions to a forager-exploiter model with volume-filling effects
    Liu, Yuanyuan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 50 : 519 - 531
  • [26] On a generalized volume-filling chemotaxis system with nonlinear signal production
    Zheng, Pan
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (01): : 211 - 231
  • [27] On the attraction-repulsion chemotaxis system with volume-filling effect
    Peng, Hongyun
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (11)
  • [28] Chemotaxis-driven pattern formation for a reaction-diffusion-chemotaxis model with volume-filling effect
    Ma, Manjun
    Gao, Meiyan
    Tong, Changqing
    Han, Yazhou
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (05) : 1320 - 1340
  • [29] On a generalized volume-filling chemotaxis system with nonlinear signal production
    Pan Zheng
    Monatshefte für Mathematik, 2022, 198 : 211 - 231
  • [30] GLOBAL REGULARITY VERSUS INFINITE-TIME SINGULARITY FORMATION IN A CHEMOTAXIS MODEL WITH VOLUME-FILLING EFFECT AND DEGENERATE DIFFUSION
    Wang, Zhi-An
    Winkler, Michael
    Wrzosek, Dariusz
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (05) : 3502 - 3525