Data-Driven Computationally Intensive Theory Development

被引:127
|
作者
Berente, Nicholas [1 ]
Seidel, Stefan [2 ]
Safadi, Hani [3 ]
机构
[1] Univ Notre Dame, Notre Dame, IN 46556 USA
[2] Univ Liechtenstein, FL-9490 Vaduz, Liechtenstein
[3] Univ Georgia, Athens, GA 30602 USA
关键词
grounded theory methodology; computational theory discovery; GTM; computational; trace data; theory development; lexicon; inductive; GROUNDED THEORY; INFORMATION-SYSTEMS; SOCIAL MEDIA; DATA SCIENCE; BIG DATA; EMERGENCE; ANALYTICS;
D O I
10.1287/isre.2018.0774
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
Increasingly abundant trace data provide an opportunity for information systems researchers to generate new theory. In this research commentary, we draw on the largely "manual" tradition of the grounded theory methodology and the highly "automated" process of computational theory discovery in the sciences to develop a general approach to computationally intensive theory development from trace data. This approach involves the iterative application of four general processes: sampling, synchronic analysis, lexical framing, and diachronic analysis. We provide examples from recent research in information systems.
引用
收藏
页码:50 / 64
页数:15
相关论文
共 50 条
  • [41] Data-driven fault model development for superconducting logic
    Li, Mingye
    Wang, Fangzhou
    Gupta, Sandeep
    2020 IEEE INTERNATIONAL TEST CONFERENCE (ITC), 2020,
  • [42] Usability and Adoption of Graphical Tools for Data-Driven Development
    Weber, Thomas
    Mayer, Sven
    PROCEEDINGS OF THE 2024 CONFERENCE ON MENSCH UND COMPUTER, MUC 2024, 2024, : 231 - 241
  • [43] Development of a Data-Driven Integrative Model of a Bacterial Chromosome
    Wasim, Abdul
    Bera, Palash
    Mondal, Jagannath
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 20 (04) : 1673 - 1688
  • [44] Data-driven Development and Maintenance of Soft-Sensors
    Abonyi, Janos
    Farsang, Barbara
    Kulcsar, Tibor
    2014 IEEE 12TH INTERNATIONAL SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI), 2014, : 239 - 244
  • [45] The incremental funding method: Data-driven software development
    Denne, M
    Cleland-Huang, J
    IEEE SOFTWARE, 2004, 21 (03) : 39 - +
  • [46] Data-Driven Model Development for the SuperSonic SemiSpan Transport
    Kukreja, Sunil L.
    AIAA JOURNAL, 2013, 51 (06) : 1333 - 1341
  • [47] Data-driven synset induction and disambiguation for wordnet development
    Apidianaki, Marianna
    Sagot, Benoit
    LANGUAGE RESOURCES AND EVALUATION, 2014, 48 (04) : 655 - 677
  • [48] A Survey of 15 Years of Data-Driven Persona Development
    Salminen, Joni
    Guan, Kathleen
    Jung, Soon-Gyo
    Jansen, Bernard J.
    INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION, 2021, 37 (18) : 1685 - 1708
  • [49] Using a data-driven model for instrument software development
    Clarke, DA
    Allen, SL
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS IX, 2000, 216 : 16 - 19
  • [50] A Toolkit for the Development of Data-Driven Functional Parallel Programmes
    Legalov, Alexander I.
    Vasilyev, Vladimir S.
    Matkovskii, Ivan V.
    Ushakova, Mariya S.
    PARALLEL COMPUTATIONAL TECHNOLOGIES, PCT 2018, 2018, 910 : 16 - 30