A reliable numerical algorithm for a fractional model of Fitzhugh-Nagumo equation arising in the transmission of nerve impulses

被引:8
|
作者
Prakash, Amit [1 ]
Kaur, Hardish [1 ]
机构
[1] Natl Inst Technol, Dept Math, Kurukshetra 136119, Haryana, India
来源
关键词
Fractional Fitzhugh-Nagumo equation; Homotopy polynomials; Homotopy perturbation transform technique (HPTT);
D O I
10.1515/nleng-2018-0057
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The key objective of this paper is to study the fractional model of Fitzhugh-Nagumo equation (FNE) with a reliable computationally effective numerical scheme, which is compilation of homotopy perturbation method with Laplace transform approach. Homotopy polynomials are employed to simplify the nonlinear terms. The convergence and error analysis of the proposed technique are presented. Numerical outcomes are shown graphically to prove the efficiency of proposed scheme.
引用
收藏
页码:719 / 727
页数:9
相关论文
共 50 条
  • [21] FITZHUGH-NAGUMO NERVE-CONDUCTION EQUATION - A SINGULAR PERTURBATION ANALYSIS
    RAJAGOPAL, K
    PHYSICS LETTERS A, 1984, 100 (05) : 269 - 272
  • [22] APPROXIMATE SOLUTION OF FRACTIONAL-ORDER FITZHUGH-NAGUMO EQUATION WITH IN NATURAL TRANSFORM
    Nasir, Muhammad
    Yang, Shuobing
    Alqudah, Mohammad
    Mahnashi, Ali M.
    Shah, Rasool
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (02): : 624 - 639
  • [23] Numerical scheme and stability analysis of stochastic Fitzhugh-Nagumo model
    Yasin, Muhammad W.
    Iqbal, Muhammad S.
    Ahmed, Nauman
    Akgul, Ali
    Raza, Ali
    Rafiq, Muhammad
    Riaz, Muhammad Bilal
    RESULTS IN PHYSICS, 2022, 32
  • [24] Spiking and bursting of a fractional order of the modified FitzHugh-Nagumo neuron model
    Alidousti J.
    Ghaziani R.K.
    Mathematical Models and Computer Simulations, 2017, 9 (3) : 390 - 403
  • [25] Solution of time fractional Fitzhugh-Nagumo equation using semi analytical techniques
    Fan, Zhi-Yong
    Ali, Khalid K.
    Maneea, M.
    Inc, Mustafa
    Yao, Shao-Wen
    RESULTS IN PHYSICS, 2023, 51
  • [26] Complex Canard Explosion in a Fractional-Order FitzHugh-Nagumo Model
    Abdelouahab, Mohammed-Salah
    Lozi, Rene
    Chen, Guanrong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (08):
  • [27] Dynamical Characteristics of the Fractional-Order FitzHugh-Nagumo Model Neuron
    Liu, Yong
    Xie, Yong
    Kang, Yanmei
    Tan, Ning
    Jiang, Jun
    Xu, Jian-Xue
    ADVANCES IN COGNITIVE NEURODYNAMICS (II), 2011, : 253 - 258
  • [28] A SINGULAR PERTURBATION-THEORY FOR THE FITZHUGH-NAGUMO NERVE-CONDUCTION EQUATION
    LAKSHMANAN, M
    RAJAGOPAL, K
    PHYSICS LETTERS A, 1981, 82 (05) : 266 - 270
  • [29] Numerical solution method for the source reconstruction problem in the fitzhugh-nagumo model
    Pavel'chak I.A.
    Computational Mathematics and Modeling, 2013, 24 (1) : 22 - 30
  • [30] Non-instantaneous impulsive stochastic FitzHugh-Nagumo equation with fractional Brownian motion
    Durga, N.
    Malik, Muslim
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 9589 - 9604