BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods

被引:163
|
作者
Gorgolewski, Krzysztof J. [1 ]
Alfaro-Almagro, Fidel [2 ]
Auer, Tibor [3 ]
Bellec, Pierre [4 ,5 ]
Capota, Mihai [6 ,7 ]
Chakravarty, M. Mallar [8 ,9 ]
Churchill, Nathan W. [10 ]
Cohen, Alexander Li [11 ]
Craddock, R. Cameron [12 ,13 ]
Devenyi, Gabriel A. [8 ,9 ]
Eklund, Anders [14 ,15 ,16 ]
Esteban, Oscar [1 ]
Flandin, Guillaume [17 ]
Ghosh, Satrajit S. [18 ,19 ]
Guntupalli, J. Swaroop [20 ]
Jenkinson, Mark [2 ]
Keshavan, Anisha [21 ]
Kiar, Gregory [22 ,23 ]
Liem, Franziskus [24 ]
Raamana, Pradeep Reddy [25 ,26 ]
Raffelt, David [27 ]
Steele, Christopher J. [8 ,9 ]
Quirion, Pierre-Olivier
Smith, Robert E. [27 ]
Strother, Stephen C. [25 ,26 ]
Varoquaux, Gael [28 ]
Wang, Yida [6 ,7 ]
Yarkoni, Tal [29 ]
Poldrack, Russell A. [1 ]
机构
[1] Stanford Univ, Dept Psychol, Stanford, CA 94305 USA
[2] Univ Oxford, Oxford Ctr Funct Magnet Resonance Imaging Brain F, Oxford, England
[3] Royal Holloway Univ London, Dept Psychol, Egham, Surrey, England
[4] Inst Univ Geriatr Montreal, Ctr Rech, Montreal, PQ, Canada
[5] Univ Montreal, Dept Comp Sci & Operat Res, Montreal, PQ, Canada
[6] Intel Corp, Parallel Comp Lab, Santa Clara, CA USA
[7] Intel Corp, Parallel Comp Lab, Hillsboro, OR 97124 USA
[8] McGill Univ, Douglas Mental Hlth Univ Inst, Montreal, PQ, Canada
[9] McGill Univ, Dept Psychiat, Montreal, PQ, Canada
[10] St Michaels Hosp, Keenan Res Ctr, Li Ka Shing Knowledge Inst, Toronto, ON, Canada
[11] Boston Childrens Hosp, Dept Neurol, Boston, MA USA
[12] Nathan S Kline Inst Psychiat Res, Ctr Biomed Imaging & Neuromodulat, Computat Neuroimaging Lab, Orangeburg, NY 10962 USA
[13] Child Mind Inst, Ctr Developing Brain, New York, NY USA
[14] Linkoping Univ, Dept Biomed Engn, Linkoping, Sweden
[15] Linkoping Univ, Dept Comp & Informat Sci, Linkoping, Sweden
[16] Linkoping Univ, Ctr Med Image Sci & Visualizat CMIV, Linkoping, Sweden
[17] Wellcome Trust Ctr Neuroimaging, London, England
[18] MIT, McGovern Inst Brain Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[19] Harvard Med Sch, Dept Otolaryngol, Boston, MA USA
[20] Dartmouth Coll, Dept Psychol & Brain Sci, Hanover, NH 03755 USA
[21] UC Berkeley UCSF Grad Program Bioengn, San Francisco, CA USA
[22] Johns Hopkins Univ, Ctr Imaging Sci, Baltimore, MD USA
[23] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD USA
[24] Univ Zurich, Univ Res Prior Program Dynam Hlth Aging, Zurich, Switzerland
[25] Rotman Res Inst, Baycrest Hlth Sci, Toronto, ON, Canada
[26] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[27] Florey Inst Neurosci & Mental Hlth, Melbourne, Vic, Australia
[28] INRIA Saclay Ile De France, Parietal Team, Palaiseau, France
[29] Univ Texas Austin, Dept Psychol, Austin, TX 78712 USA
关键词
SEGMENTATION; PIPELINES; PLATFORM; MACHINE;
D O I
10.1371/journal.pcbi.1005209
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The rate of progress in human neurosciences is limited by the inability to easily apply a wide range of analysis methods to the plethora of different datasets acquired in labs around the world. In this work, we introduce a framework for creating, testing, versioning and archiving portable applications for analyzing neuroimaging data organized and described in compliance with the Brain Imaging Data Structure (BIDS). The portability of these applications (BIDS Apps) is achieved by using container technologies that encapsulate all binary and other dependencies in one convenient package. BIDS Apps run on all three major operating systems with no need for complex setup and configuration and thanks to the comprehensiveness of the BIDS standard they require little manual user input. Previous containerized data processing solutions were limited to single user environments and not compatible with most multi-tenant High Performance Computing systems. BIDS Apps overcome this limitation by taking advantage of the Singularity container technology. As a proof of concept, this work is accompanied by 22 ready to use BIDS Apps, packaging a diverse set of commonly used neuroimaging algorithms.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] BABS in Action: Merging Reproducibility and Scalability for Large-Scale Neuroimaging Analysis With BIDS Apps
    Zhao, Chenying
    Chen, Yibei
    Jarecka, Dorota
    Ghosh, Satrajit
    Cieslak, Matthew
    Satterthwaite, Theodore D.
    BIOLOGICAL PSYCHIATRY, 2024, 95 (10) : S21 - S22
  • [2] Reproducibility and replicability in neuroimaging data analysis
    Adali, Tulay
    Calhoun, Vince D.
    CURRENT OPINION IN NEUROLOGY, 2022, 35 (04) : 475 - 481
  • [3] Improving the Efficiency and Ease of Healthcare Analysis Through Use of Data Visualization Dashboards
    Stadler, Jennifer G.
    Donlon, Kipp
    Siewert, Jordan D.
    Franken, Tessa
    Lewis, Nathaniel E.
    BIG DATA, 2016, 4 (02) : 129 - 135
  • [4] New Data and Methods in Accessibility Analysis
    Ana Condeço-Melhorado
    Aura Reggiani
    Javier Gutiérrez
    Networks and Spatial Economics, 2018, 18 : 237 - 240
  • [5] New Data and Methods in Accessibility Analysis
    Condeco-Melhorado, Ana
    Reggiani, Aura
    Gutierrez, Javier
    NETWORKS & SPATIAL ECONOMICS, 2018, 18 (02): : 237 - 240
  • [6] FESTF Gopher: Improving data management, accessibility, and use
    Frank, Ashlea
    McGaughey, Bernalyn
    Hall, Tilghman
    Ghebremichael, Lula
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [7] Singularity Containers Improve Reproducibility and Ease of Use in Computational Image Analysis Workflows
    Mitra-Behura, Shilpita
    Fiolka, Reto Paul
    Daetwyler, Stephan
    FRONTIERS IN BIOINFORMATICS, 2022, 1
  • [8] Impact of Inadequate Methods and Data Analysis on Reproducibility
    Elliott, Steve
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2020, 109 (02) : 1211 - 1219
  • [9] Editorial: Methods and application in fractal analysis of neuroimaging data
    Porcaro, Camillo
    Diciotti, Stefano
    Madan, Christopher R.
    Marzi, Chiara
    FRONTIERS IN HUMAN NEUROSCIENCE, 2024, 18
  • [10] Statistical Learning Methods for Neuroimaging Data Analysis with Applications
    Zhu, Hongtu
    Li, Tengfei
    Zhao, Bingxin
    ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, 2023, 6 : 73 - 104