Learning Graph Dynamics using Deep Neural Networks

被引:41
|
作者
Narayan, Apurva [1 ]
Roe, Peter H. O'N [2 ]
机构
[1] Univ Waterloo, Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 02期
关键词
Graph Theory; Learning Graphs; Deep Learning; CLASSIFICATION;
D O I
10.1016/j.ifacol.2018.03.074
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A large number of real-world problems have high dimensional data. The data obtained from these problems is highly structured and usually in the form of graphs. Graphs represent spatial information about the system in the form of vertices and edges. Often graphs evolve with time and the underlying system exhibits dynamic behavior. Hence, these graphs contain both spatial and temporal information about the system. Understanding, visualizing, and learning large graphs is of key importance for understanding the underlying system and is a challenging task due to the data deluge problem. Our work here utilizes both spatial and temporal information from structured graphs. We learn spatial and temporal information using a specific type of neural network model. Our model is robust to the kind of graphs and their dynamics of evolution. Our approach is scalable to not only the size of the graph (number of vertices and edges) but also the number of attributes (features) of the data. We show that our approach is simple, generic, parallelizable, and performs at-par with the state-of-the-art techniques. We also compare the results of our model against other existing techniques. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:433 / 438
页数:6
相关论文
共 50 条
  • [41] Generalizable Machine Learning in Neuroscience Using Graph Neural Networks
    Wang, Paul Y.
    Sapra, Sandalika
    George, Vivek Kurien
    Silva, Gabriel A.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
  • [43] Biosignals learning and synthesis using deep neural networks
    Belo, David
    Rodrigues, Joao
    Vaz, Joao R.
    Pezarat-Correia, Pedro
    Gamboa, Hugo
    BIOMEDICAL ENGINEERING ONLINE, 2017, 16
  • [44] Learning from LDA Using Deep Neural Networks
    Zhang, Dongxu
    Luo, Tianyi
    Wang, Dong
    NATURAL LANGUAGE UNDERSTANDING AND INTELLIGENT APPLICATIONS (NLPCC 2016), 2016, 10102 : 657 - 664
  • [45] A Deep Reinforcement Learning Heuristic for SAT based on Antagonist Graph Neural Networks
    Fournier, Thomas
    Lallouet, Arnaud
    Cropsal, Telio
    Glorian, Gael
    Papadopoulos, Alexandre
    Petitet, Antoine
    Perez, Guillaume
    Sekar, Suruthy
    Suijlen, Wijnand
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 1218 - 1222
  • [46] Biosignals learning and synthesis using deep neural networks
    David Belo
    João Rodrigues
    João R. Vaz
    Pedro Pezarat-Correia
    Hugo Gamboa
    BioMedical Engineering OnLine, 16
  • [47] Combining Deep Reinforcement Learning With Graph Neural Networks for Optimal VNF Placement
    Sun, Penghao
    Lan, Julong
    Li, Junfei
    Guo, Zehua
    Hu, Yuxiang
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (01) : 176 - 180
  • [48] Deep reinforcement learning guided graph neural networks for brain network analysis
    Zhao, Xusheng
    Wu, Jia
    Peng, Hao
    Beheshti, Amin
    Monaghan, Jessica J. M.
    McAlpine, David
    Hernandez-Perez, Heivet
    Dras, Mark
    Dai, Qiong
    Li, Yangyang
    Yu, Philip S.
    He, Lifang
    NEURAL NETWORKS, 2022, 154 : 56 - 67
  • [49] Human Activity Recognition Using Graph Structures and Deep Neural Networks
    Bsoul, Abed Al Raoof K.
    COMPUTERS, 2025, 14 (01)
  • [50] Predicting Lattice Vibrational Frequencies Using Deep Graph Neural Networks
    Nguyen, Nghia
    Louis, Steph-Yves V.
    Wei, Lai
    Choudhary, Kamal
    Hu, Ming
    Hu, Jianjun
    ACS OMEGA, 2022, 7 (30): : 26641 - 26649