Incremental Nearest Neighborhood Graph for Data Stream Clustering

被引:0
|
作者
Louhi, Ibrahim [1 ,2 ]
Boudjeloud-Assala, Lydia [1 ]
Tamisier, Thomas [2 ]
机构
[1] Univ Lorraine, LITA EA 3097, Lab Informat Thor & Appl, F-57045 Metz, France
[2] Luxembourg Inst Sci & Technol, L-4422 Belvaux, Luxembourg
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we deal with one of the most relevant problems in the field of data mining, the real time processing and visualization of data streams. To deal with data streams we propose a novel approach that uses a neighborhood-based clustering. Instead of processing each new element one by one, we propose to process each group of new elements simultaneously. A clustering is applied on each new group using neighborhood graphs. The obtained clusters are then used to incrementally construct a representative graph of the data stream. The data stream graph is visualized in real time with specific visualizations that reflect the processing algorithm. To validate the approach, we apply it to different data streams and we compare it with known data stream clustering approaches.
引用
收藏
页码:2468 / 2475
页数:8
相关论文
共 50 条
  • [41] Neighborhood contrastive representation learning for attributed graph clustering
    Wang, Tong
    Wu, Junhua
    Qi, Yaolei
    Qi, Xiaoming
    Guan, Juwei
    Zhang, Yuan
    Yang, Guanyu
    NEUROCOMPUTING, 2023, 562
  • [42] Data stream clustering: a review
    Zubaroglu, Alaettin
    Atalay, Volkan
    ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (02) : 1201 - 1236
  • [43] Data Stream Clustering: A Survey
    Silva, Jonathan A.
    Faria, Elaine R.
    Barros, Rodrigo C.
    Hruschka, Eduardo R.
    de Carvalho, Andre C. P. L. F.
    Gama, Joao
    ACM COMPUTING SURVEYS, 2013, 46 (01)
  • [44] Data stream clustering: a review
    Alaettin Zubaroğlu
    Volkan Atalay
    Artificial Intelligence Review, 2021, 54 : 1201 - 1236
  • [45] Effectively Incremental Structural Graph Clustering for Dynamic Parameter
    Zong, Chuanyu
    Xia, Xiufeng
    Xian, Chao
    Zhang, Anzhen
    Zhu, Rui
    Wang, Jiaying
    2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 529 - 536
  • [46] Urban Hotspot Area Detection Using Nearest-Neighborhood-Related Quality Clustering on Taxi Trajectory Data
    Yu, Qingying
    Chen, Chuanming
    Sun, Liping
    Zheng, Xiaoyao
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (07)
  • [47] Spectral Clustering Based on k-Nearest Neighbor Graph
    Lucinska, Malgorzata
    Wierzchon, Lawomir T.
    COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT (CISIM), 2012, 7564 : 254 - 265
  • [48] Incremental Clustering for Categorical Data Using Clustering Ensemble
    Li Taoying
    Chne Yan
    Qu Lili
    Mu Xiangwei
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 2519 - 2524
  • [49] Graph Clustering Using Mutual K-Nearest Neighbors
    Sardana, Divya
    Bhatnagar, Raj
    ACTIVE MEDIA TECHNOLOGY, AMT 2014, 2014, 8610 : 35 - 48
  • [50] An Incremental Clustering of Gene Expression data
    Das, Rosy
    Bhattacharyya, Dhruba K.
    Kalita, Jugal K.
    2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 741 - +