Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations

被引:51
|
作者
Zhao, Yanmin [1 ,2 ]
Zhang, Yadong [1 ]
Liu, F. [2 ]
Turner, I. [2 ]
Tang, Yifa [3 ]
Anh, V. [2 ]
机构
[1] Xuchang Univ, Sch Math & Stat, Xuchang 461000, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
[3] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-term time-fractional diffusion equation; Finite element method; L1; approximation; Stability Convergence and superconvergence; FINITE-ELEMENT-METHOD; DIFFERENCE SCHEME; ORDER; APPROXIMATION;
D O I
10.1016/j.camwa.2016.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using finite element method in spatial direction and classical L1 approximation in temporal direction, a fully-discrete scheme is established for a class of two-dimensional multi-term time fractional diffusion equations with Caputo fractional derivatives. The stability analysis of the approximate scheme is proposed. The spatial global superconvergence and temporal convergence of order O(h(2) + tau(2-alpha)) for the original variable in H-1-norm is presented by means of properties of bilinear element and interpolation postprocessing technique, where h and tau are the step sizes in space and time, respectively. Finally, several numerical examples are implemented to evaluate the efficiency of the theoretical results. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1087 / 1099
页数:13
相关论文
共 50 条
  • [31] A posteriori error estimates of spectral Galerkin methods for multi-term time fractional diffusion equations
    Tang, Bo
    Chen, Yanping
    Lin, Xiuxiu
    APPLIED MATHEMATICS LETTERS, 2021, 120
  • [32] Numerical solutions of multi-term fractional reaction-diffusion equations
    Zou, Leqiang
    Zhang, Yanzi
    AIMS MATHEMATICS, 2025, 10 (01): : 777 - 792
  • [33] A Weak Galerkin Finite Element Method for Multi-Term Time-Fractional Diffusion Equations
    Zhou, Jun
    Xu, Da
    Chen, Hongbin
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (01) : 181 - 193
  • [34] Efficient and Stable Numerical Methods for Multi-Term Time Fractional Sub-Diffusion Equations
    Ren, Jincheng
    Sun, Zhi-zhong
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2014, 4 (03) : 242 - 266
  • [35] A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations
    Zaky, Mahmoud A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 3525 - 3538
  • [36] Superconvergence analysis of an H1-Galerkin mixed finite element method for two-dimensional multi-term time fractional diffusion equations
    Shi, Zhengguang
    Zhao, Yanmin
    Tang, Yifa
    Wang, Fenling
    Shi, Yanhua
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (09) : 1845 - 1857
  • [37] Two-grid fully discrete finite element algorithms on temporal graded meshes for nonlinear multi-term time-fractional diffusion equations with variable coefficient
    Li, Kang
    Tan, Zhijun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 125
  • [38] Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives
    Al-Refai, Mohammed
    Luchko, Yuri
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 40 - 51
  • [39] Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain
    Jiang, H.
    Liu, F.
    Turner, I.
    Burrage, K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 3377 - 3388
  • [40] Sharp error estimate of Grunwald-Letnikov scheme for a multi-term time fractional diffusion equation
    Cao, Dewei
    Chen, Hu
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (06)