Determinant quantum Monte Carlo study of d-wave pairing in the plaquette Hubbard hamiltonian

被引:25
|
作者
Ying, T. [1 ]
Mondaini, R. [2 ,3 ]
Sun, X. D. [1 ]
Paiva, T. [4 ]
Fye, R. M. [5 ]
Scalettar, R. T. [3 ]
机构
[1] Harbin Inst Technol, Dept Phys, Harbin 150001, Peoples R China
[2] Penn State Univ, Dept Phys, Davey Lab 104, University Pk, PA 16802 USA
[3] Univ Calif Davis, Phys Dept, Davis, CA 95616 USA
[4] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, RJ, Brazil
[5] Sandia Natl Labs, Albuquerque, NM 87185 USA
来源
PHYSICAL REVIEW B | 2014年 / 90卷 / 07期
关键词
EXACT-DIAGONALIZATION; NUMERICAL-SIMULATION; HOLE DYNAMICS; MODEL; BINDING; SUPERCONDUCTORS; CLUSTERS; SYSTEMS;
D O I
10.1103/PhysRevB.90.075121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Determinant quantum Monte Carlo (DQMC) is used to determine the pairing and magnetic response for a Hubbard model built up from four-site clusters-a two-dimensional square lattice consisting of elemental 2 x 2 plaquettes with hopping t and on-site repulsion U coupled by an interplaquette hopping t' <= t. Superconductivity in this geometry has previously been studied by a variety of analytic and numeric methods, with differing conclusions concerning whether the pairing correlations and transition temperature are raised near half filling by the inhomogeneous hopping or not. For U/t = 4, DQMC indicates an optimal t'/t approximate to 0.4 at which the pairing vertex is most attractive. The optimal t'/t increases with U/t. We then contrast our results for this plaquette model with a hamiltonian which instead involves a regular pattern of site energies whose large site energy limit is the three-band CuO2 model; we show that there the inhomogeneity rapidly, and monotonically, suppresses pairing.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Pairing in graphene: A quantum Monte Carlo study
    Ma, Tianxing
    Huang, Zhongbing
    Hu, Feiming
    Lin, Hai-Qing
    PHYSICAL REVIEW B, 2011, 84 (12)
  • [22] Nonexistence of d-wave-superconductivity in the quantum Monte Carlo simulation of the Hubbard model
    Matuttis, HG
    Ito, N
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2005, 16 (06): : 857 - 866
  • [23] Benchmarking Hamiltonian Noise in the D-Wave Quantum Annealer
    Zaborniak, Tristan
    De Sousa, ROGéRIO
    IEEE Transactions on Quantum Engineering, 2021, 2
  • [24] Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo
    Kung, Y. F.
    Chen, C-C.
    Wang, Yao
    Huang, E. W.
    Nowadnick, E. A.
    Moritz, B.
    Scalettar, R. T.
    Johnston, S.
    Devereaux, T. P.
    PHYSICAL REVIEW B, 2016, 93 (15)
  • [25] NODELESS D-WAVE PAIRING IN A 2-LAYER HUBBARD-MODEL
    BULUT, N
    SCALAPINO, DJ
    SCALETTAR, RT
    PHYSICAL REVIEW B, 1992, 45 (10): : 5577 - 5584
  • [26] Quantum Monte Carlo study of hole binding and pairing correlations in the three-band Hubbard model
    Guerrero, M
    Gubernatis, JE
    Zhang, SW
    PHYSICAL REVIEW B, 1998, 57 (19): : 11980 - 11988
  • [27] COOPER PAIRING IN A 2-BAND HUBBARD-MODEL - A QUANTUM MONTE-CARLO STUDY
    KUROKI, K
    AOKI, H
    SOLID STATE COMMUNICATIONS, 1990, 73 (08) : 563 - 567
  • [28] Quantum Monte Carlo and the Hubbard Model
    Scalapino, Douglas
    17TH INTERNATIONAL CONFERENCE ON RECENT PROGRESS IN MANY-BODY THEORIES (MBT17), 2014, 529
  • [29] Strong indications of d-wave superconductivity in the two-dimensional Hubbard model obtained by the variational Monte Carlo calculations
    Yamaji, K
    Nakanishi, T
    Yanagisawa, T
    PHYSICA C, 1997, 282 : 1767 - 1768
  • [30] Strong indications of d-wave superconductivity in the two-dimensional Hubbard model obtained by the variational Monte Carlo calculations
    Electrotechnical Lab, Ibaraki, Japan
    Phys C Supercond, pt 3 (1767-1768):