Convolutionless non-Markovian master equations and quantum trajectories: Brownian motion

被引:143
|
作者
Strunz, WT
Yu, T
机构
[1] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[3] Queen Mary Univ London, Dept Phys, London E1 4NS, England
来源
PHYSICAL REVIEW A | 2004年 / 69卷 / 05期
关键词
D O I
10.1103/PhysRevA.69.052115
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Stochastic Schrodinger equations for quantum trajectories offer an alternative and sometimes superior approach to the study of open quantum system dynamics. Here we show that recently established convolutionless non-Markovian stochastic Schrodinger equations may serve as a powerful tool for the derivation of convolutionless master equations for non-Markovian open quantum systems. The most interesting example is quantum Brownian motion (QBM) of a harmonic oscillator coupled to a heat bath of oscillators, one of the most employed exactly soluble models of open system dynamics. We show explicitly how to establish the direct connection between the exact convolutionless master equation of QBM and the corresponding convolutionless exact stochastic Schrodinger equation.
引用
收藏
页码:052115 / 1
页数:14
相关论文
共 50 条
  • [31] On the Structure of Generators for Non-Markovian Master Equations
    Kossakowski, Andrzej
    Rebolledo, Rolando
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2009, 16 (2-3): : 259 - 268
  • [32] Non-Markovian quantum trajectories for spectral detection
    Jack, M.W.
    Collett, M.J.
    Walls, D.F.
    Physical Review A - Atomic, Molecular, and Optical Physics, 1999, 59 (03): : 2306 - 2321
  • [33] NON-MARKOVIAN BROWNIAN-MOTION IN A PERIODIC POTENTIAL
    IGARASHI, A
    MUNAKATA, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1988, 57 (07) : 2439 - 2447
  • [34] Semiclassical non-Markovian Brownian motion in anharmonic potentials
    Koch, Werner
    Grossmann, Frank
    Stockburger, Juergen T.
    Ankerhold, Joachim
    CHEMICAL PHYSICS, 2010, 370 (1-3) : 34 - 41
  • [35] Genuine quantum trajectories for non-Markovian processes
    Breuer, HP
    PHYSICAL REVIEW A, 2004, 70 (01): : 012106 - 1
  • [36] Quantum non-Markovian Stochastic equations
    Adamian, GG
    Antonenko, NV
    Kanokov, Z
    Sargsyan, VV
    THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 145 (01) : 1443 - 1456
  • [37] Continuous measurement and non-Markovian quantum trajectories
    Jack, MW
    Collett, MJ
    PHYSICAL REVIEW A, 2000, 61 (06): : 14
  • [38] Non-Markovian quantum trajectories for open systems
    Strunz, WT
    Diósi, L
    Gisin, N
    QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT 2, 2000, : 195 - 200
  • [39] Non-Markovian quantum trajectories for spectral detection
    Univ of Auckland, Auckland, New Zealand
    Phys Rev A, 3 (2306-2321):
  • [40] Collision model for non-Markovian quantum trajectories
    Whalen, S. J.
    PHYSICAL REVIEW A, 2019, 100 (05)