Design of nonlinear electromagnetic energy harvester equipped with mechanical amplifier and spring bumpers

被引:11
|
作者
Ostrowski, M. [1 ]
Blachowski, B. [1 ]
Bochenski, M. [2 ]
Piernikarski, D. [2 ]
Filipek, P. [3 ]
Janicki, W. [4 ]
机构
[1] Polish Acad Sci, Inst Fundamental Technol Res, Ul Pawinskiego 5b, PL-02106 Warsaw, Poland
[2] Lublin Univ Technol, Fac Mech Engn, Ul Nadbystrzycka 36, PL-20618 Lublin, Poland
[3] Lublin Univ Technol, Fac Elect Engn & Comp Sci, Ul Nadbystrzycka 38A, PL-20618 Lublin, Poland
[4] Marie Curie Sklodowska Univ, Fac Earth Sci & Spatial Management, Al Krasnicka 2d, PL-20718 Lublin, Poland
关键词
energy harvesting; velocity amplification; nonlinear electromagnetic circuit; spring bumper; quarter car model;
D O I
10.24425/bpasts.2020.135384
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The main drawback of vibration-based energy harvesting is its poor efficiency due to small amplitudes of vibration and low sensitivity at frequencies far from resonant frequency. The performance of electromagnetic energy harvester can be improved by using mechanical enhancements such as mechanical amplifiers or spring bumpers. The mechanical amplifiers increase range of movement and velocity, improving also significantly harvester efficiency for the same level of excitation. As a result of this amplitude of motion is much larger comparing to the size of the electromagnetic coil. This in turn imposes the need for modelling of electromagnetic circuit parameters as the function of the moving magnet displacement. Moreover, high velocities achieved by the moving magnet reveal nonlinear dynamics in the electromagnetic circuit of the energy harvester. Another source of nonlinearity is the collision effect between magnet and spring bumpers. It has been shown that this effect should be carefully considered during design process of the energy harvesting device. The present paper investigates the influence of the above-mentioned nonlinearities on power level generated by the energy harvester. A rigorous model of the electromagnetic circuit, derived with aid of the Ilamilton's principle of the least action, has been proposed. It includes inductance of the electromagnetic coil as the function of the moving magnet position. Additionally, nonlinear behaviour of the overall electromagnetic device has been tested numerically for the case of energy harvester attached to the quarter car model moving on random road profiles. Such a source of excitation provides wide band of excitation frequencies, which occur in variety of real-life applications.
引用
收藏
页码:1373 / 1383
页数:11
相关论文
共 50 条
  • [21] Design and development of a miniaturized mechanically and magnetically-sprung electromagnetic nonlinear energy harvester
    Zhao, Feng
    Miyata, Yusuke
    Ushiki, So
    Masuda, Arata
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XIII, 2019, 10967
  • [22] Design and Research on a Nonlinear 2DOF Electromagnetic Energy Harvester With Velocity Amplification
    Liu, Ruiqi
    Xu, Zhenlong
    Jin, Yuanfan
    Wang, Wen
    IEEE ACCESS, 2020, 8 : 159947 - 159955
  • [23] A Nonlinear Concept of Electromagnetic Energy Harvester for Rotational Applications
    Gunn, B. E.
    Theodossiades, S.
    Rothberg, S. J.
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2019, 141 (03):
  • [24] On the performances of a nonlinear hybrid piezoelectric and electromagnetic energy harvester
    Li, Ping
    Gao, Shiqiao
    Zhou, Xiaoya
    Liu, Haipeng
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2018, 24 (02): : 1017 - 1024
  • [25] On the performances of a nonlinear hybrid piezoelectric and electromagnetic energy harvester
    Ping Li
    Shiqiao Gao
    Xiaoya Zhou
    Haipeng Liu
    Microsystem Technologies, 2018, 24 : 1017 - 1024
  • [26] Pendulum energy harvester with torsion spring mechanical energy storage regulator
    Graves, James
    Kuang, Yang
    Zhu, Meiling
    SENSORS AND ACTUATORS A-PHYSICAL, 2022, 339
  • [27] Design and Analysis of a Vibration-driven AA Size Electromagnetic Energy Harvester Using Magnetic Spring
    Foisal, Abu Riduan Md
    Chung, Gwiy-Sang
    TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2012, 13 (03) : 125 - 128
  • [28] Modelling and Optimization of a Magnetic Spring Based Electromagnetic Vibration Energy Harvester
    Haojun Liao
    Tingcong Ye
    Yu Pang
    Ciaran Feeney
    Lei Liu
    Zhengmin Zhang
    Chitta Saha
    Ningning Wang
    Journal of Electrical Engineering & Technology, 2022, 17 : 463 - 474
  • [29] Modelling and Optimization of a Magnetic Spring Based Electromagnetic Vibration Energy Harvester
    Liao, Haojun
    Ye, Tingcong
    Pang, Yu
    Feeney, Ciaran
    Liu, Lei
    Zhang, Zhengmin
    Saha, Chitta
    Wang, Ningning
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (01) : 463 - 474
  • [30] Nonlinear design and optimisation of a vibration energy harvester
    Diala, Uchenna
    Gunawardena, Rajintha
    Zhu, Yunpeng
    Lang, Zi-Qiang
    2018 UKACC 12TH INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2018, : 180 - 185