Accurate modelling of lossy SIW resonators using a neural network residual kriging approach

被引:4
|
作者
Angiulli, Giovanni [1 ]
De Carlo, Domenico [2 ]
Sgro, Annalisa [2 ]
Versaci, Mario [2 ]
Morabito, Francesco Carlo [2 ]
机构
[1] Univ Mediterranea, DIIES, Via Graziella Loc Feo di Vito, I-89122 Reggio Di Calabria, Italy
[2] Univ Mediterranea, DICEAM, Via Graziella Loc Feo di Vito, I-89122 Reggio Di Calabria, Italy
来源
IEICE ELECTRONICS EXPRESS | 2017年 / 14卷 / 06期
关键词
CAD; artificial neural networks; kriging; lossy SIW resonators; COMPUTATION;
D O I
10.1587/elex.14.20170073
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a computational intelligence method to model lossy substrate integrated waveguide (SIW) cavity resonators, the Neural Network Residual Kriging (NNRK) approach, is presented. Numerical results for the fundamental resonant frequency f(r) and related quality factor Q(r) computed for the case of lossy hexagonal SIW resonators demonstrate the NNRK superior estimation accuracy compared to that provided by the conventional Artificial Neural Networks (ANNs) models for these devices.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Asymmetric Residual Neural Network for Accurate Human Activity Recognition
    Long, Jun
    Sun, Wuqing
    Yang, Zhan
    Raymond, Osolo Ian
    INFORMATION, 2019, 10 (06)
  • [22] A threshold electromagnetic classification approach for cylinders embedded in a lossy medium by using a neural network technique
    Bermani, E
    Caorsi, S
    Raffetto, M
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2000, 24 (01) : 13 - 16
  • [23] Residual soil modelling using neural networks
    Dyminsky, AS
    Parente, E
    Romanel, C
    ADVANCES IN COMPUTATIONAL STRUCTURES TECHNOLOGY, 1996, : 103 - 106
  • [24] Magnetic inverse modelling of a dike using the artificial neural network approach
    Alimoradi, Andisheh
    Angorani, Saeed
    Ebrahimzadeh, Mehrnoosh
    Panahi, Masoud Shariat
    NEAR SURFACE GEOPHYSICS, 2011, 9 (04) : 339 - 347
  • [25] Dynamic Hysteresis Modelling of Magnetic Materials by using a Neural Network approach
    Laudani, Antonino
    Lozito, Gabriele Maria
    Fulginei, Francesco Riganti
    2014 AEIT ANNUAL CONFERENCE - FROM RESEARCH TO INDUSTRY: THE NEED FOR A MORE EFFECTIVE TECHNOLOGY TRANSFER (AEIT), 2014,
  • [26] Site Characterization Model Using Artificial Neural Network and Kriging
    Samui, Pijush
    Sitharam, T. G.
    INTERNATIONAL JOURNAL OF GEOMECHANICS, 2010, 10 (05) : 171 - 180
  • [27] Medical image denoising using convolutional neural network: a residual learning approach
    Jifara, Worku
    Jiang, Feng
    Rho, Seungmin
    Cheng, Maowei
    Liu, Shaohui
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (02): : 704 - 718
  • [28] Power System Inertia Estimation Using A Residual Neural Network Based Approach
    Ramirez-Gonzalez, M.
    Sevilla, F. R. Segundo
    Korba, P.
    2022 IEEE 4TH GLOBAL POWER, ENERGY AND COMMUNICATION CONFERENCE (IEEE GPECOM2022), 2022, : 355 - 360
  • [29] Medical image denoising using convolutional neural network: a residual learning approach
    Worku Jifara
    Feng Jiang
    Seungmin Rho
    Maowei Cheng
    Shaohui Liu
    The Journal of Supercomputing, 2019, 75 : 704 - 718
  • [30] Modelling of shearing behaviour of a residual soil with recurrent neural network
    Zhu, JH
    Zaman, MM
    Anderson, SA
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 1998, 22 (08) : 671 - 687