共 50 条
Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells
被引:292
|作者:
Vaquero, EC
Edderkaoui, M
Pandol, SJ
Gukovsky, I
Gukovskaya, AS
机构:
[1] Vet Affairs Greater Los Angeles Healthcare Syst, Dept Med, W Los Angeles Healthcare Ctr, Los Angeles, CA 90073 USA
[2] Univ Calif Los Angeles, Los Angeles, CA 90073 USA
关键词:
D O I:
10.1074/jbc.M400078200
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
One reason why pancreatic cancer is so aggressive and unresponsive to treatments is its resistance to apoptosis. We report here that reactive oxygen species (ROS) are a prosurvival, antiapoptotic factor in pancreatic cancer cells. Human pancreatic adenocarcinoma MIA PaCa-2 and PANC-1 cells generated ROS, which was stimulated by growth factors ( serum, insulin-like growth factor I, or fibroblast growth factor-2). Growth factors also stimulated membrane NAD(P) H oxidase activity in these cells. Both intracellular ROS and NAD( P) H oxidase activity were inhibited by antioxidants tiron and N-acetylcysteine and the inhibitor of flavoprotein-dependent oxidases, diphenylene iodonium, but not by inhibitors of various other ROS-generating enzymes. Using Rho(0) cells deficient in mitochondrial DNA, we showed that a nonmitochondrial NAD( P) H oxidase is a major source of growth factor-induced ROS in pancreatic cancer cells. Among proteins that have been implicated in NAD( P) H oxidase activity, MIA PaCa-2 and PANC-1 cells do not express the phagocytic gp91(phox) subunit but express several nonphagocytic oxidase (NOX) isoforms. Transfection with Nox4 antisense oligonucleotide inhibited NAD( P) H oxidase activity and ROS production in MIA PaCa-2 and PANC-1 cells. Inhibiting ROS with the antioxidants, Nox4 antisense, or MnSOD overexpression all stimulated apoptosis in pancreatic cancer cells as measured by internucleosomal DNA fragmentation, phosphatidylserine externalization, cytochrome c release, and effector caspase activation. The results show that growth factor-induced ROS produced by NAD( P) H oxidase ( probably Nox4) protect pancreatic cancer cells from apoptosis. This mechanism may play an important role in pancreatic cancer resistance to treatment and thus represent a novel therapeutic target.
引用
收藏
页码:34643 / 34654
页数:12
相关论文