The Milne-type solution for multiple scattering phenomena in the P1 approximation

被引:1
|
作者
Kuzmin, VL [1 ]
Romanov, VP
机构
[1] Inst Commerce & Econ, St Petersburg 194018, Russia
[2] St Petersburg State Univ, Dept Phys, St Petersburg 198504, Russia
来源
EUROPHYSICS LETTERS | 2002年 / 59卷 / 02期
关键词
D O I
10.1209/epl/i2002-00227-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Considering the multiple scattering from a highly inhomogeneous medium occupying a half-space, a solution of the Bethe-Salpeter equation is obtained using the Wiener-Hopf method. The result obtained generalizes the well-known Milne solution to the case of anisotropic single-scattering in the P-1 approximation. The dependence of the coherent backscattering on the anisotropy parameter is derived directly and shown to differ essentially from that predicted by the diffusion approximation. Initial slopes of coherent backscattering as well as temporal correlation function are found to be in fair agreement with known experimental data.
引用
收藏
页码:206 / 211
页数:6
相关论文
共 50 条
  • [41] Construction by a P1 finite elements of a convergent approximation of some variational problems
    Elfanni, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (03): : 391 - 396
  • [42] A posteriori error estimators for stabilized P1 nonconforming approximation of the Stokes problem
    Lee, Hyung-Chun
    Kim, Kwang-Yeon
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (45-48) : 2903 - 2912
  • [43] Nontrivial Weak Solution for a Schrodinger-Kirchhoff-Type System Driven by a (p1,p2)-Laplacian Operator
    Ma, D.
    Liu, L.
    Wu, Y.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01) : 237 - 252
  • [44] Solvability of P1 approximation of a conductive-radiative heat transfer problem
    Kovtanyuk, Andrey E.
    Chebotarev, Alexander Yu.
    Botkin, Nikolai D.
    Hoffmann, Karl-Heinz
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 : 247 - 252
  • [45] Point reactor kinetics equations from P1 approximation of the transport equations
    Espinosa-Paredes, G.
    Suescun-Diaz, D.
    ANNALS OF NUCLEAR ENERGY, 2020, 144
  • [46] P1 TOTAL SCATTERING PROBABILITY FOR LOW-ENERGY NEUTRON SCATTERING BY A MONATOMIC GAS
    PAPPANO, AW
    BLACKSHA.GL
    SQUIRE, W
    JOURNAL OF NUCLEAR ENERGY, 1968, 22 (08): : 453 - &
  • [47] Basicity of some P1 phosphazenes in water and in aqueous surfactant solution
    Soovali, Lilli
    Rodima, Toomas
    Kaljurand, Ivari
    Kuett, Agnes
    Koppel, Ilmar A.
    Leito, Ivo
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2006, 4 (11) : 2100 - 2105
  • [48] SOLUTION OF DIFFUSION AND P1 FINITE-ELEMENT EQUATIONS BY ITERATION
    TOMLINSON, ET
    ROBINSON, JC
    VONDY, DR
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1975, 22 (NOV16): : 248 - 248
  • [49] Time-Fractional Telegrapher's Equation (P1) Approximation for the Transport Equation
    Espinosa-Paredes, Gilberto
    Antonio Polo-Labarrios, Marco
    NUCLEAR SCIENCE AND ENGINEERING, 2012, 171 (03) : 258 - 264
  • [50] Competitive flow diversion of multiple P1 aneurysms: proposed classification
    MacLean, Mark Alexander
    Huynh, Thien J.
    Schmidt, Matthias Helge
    Pereira, Vitor M.
    Weeks, Adrienne
    BMJ CASE REPORTS, 2020, 13 (06)