LEARNING A PERCEPTUAL MANIFOLD FOR IMAGE SET CLASSIFICATION

被引:0
|
作者
Kumar, Sriram [1 ]
Savakis, Andreas [1 ]
机构
[1] Rochester Inst Technol, Rochester, NY 14623 USA
关键词
Image Set Classification; Independent Component Analysis; Grassmann Manifold; Face Recognition; Object Recognition; FACE RECOGNITION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a biologically motivated manifold learning framework for image set classification inspired by Independent Component Analysis for Grassmann manifolds. A Grassmann manifold is a collection of linear subspaces, such that each subspace is mapped on a single point on the manifold. We propose constructing Grassmann subspaces using Independent Component Analysis for robustness and improved class separation. The independent components capture spatially local information similar to Gabor-like filters within each subspace resulting in better classification accuracy. We further utilize linear discriminant analysis or sparse representation classification on the Grassmann manifold to achieve robust classification performance. We demonstrate the efficacy of our approach for image set classification on face and object recognition datasets.
引用
收藏
页码:4433 / 4437
页数:5
相关论文
共 50 条
  • [31] Adaptive group Riemannian manifold learning for hyperspectral image classification
    Tao H.
    Xie X.
    Tang R.
    Hou Y.
    Li J.
    Feng W.
    Chen Y.
    Xu G.
    International Journal of Wireless and Mobile Computing, 2022, 22 (3-4) : 300 - 309
  • [32] Hyperspectral image classification with discriminative manifold broad learning system
    Chu, Yonghe
    Lin, Hongfei
    Yang, Liang
    Sun, Shichang
    Diao, Yufeng
    Min, Changrong
    Fan, Xiaochao
    Shen, Chen
    Neurocomputing, 2021, 442 : 236 - 248
  • [33] Hyperspectral image classification with discriminative manifold broad learning system
    Chu, Yonghe
    Lin, Hongfei
    Yang, Liang
    Sun, Shichang
    Diao, Yufeng
    Min, Changrong
    Fan, Xiaochao
    Shen, Chen
    NEUROCOMPUTING, 2021, 442 : 236 - 248
  • [34] Histopathology Image Classification Using Deep Manifold Contrastive Learning
    Tan, Jing Wei
    Jeong, Won-Ki
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VI, 2023, 14225 : 683 - 692
  • [35] SMALE: Hyperspectral Image Classification via Superpixels and Manifold Learning
    Liao, Nannan
    Gong, Jianglei
    Li, Wenxing
    Li, Cheng
    Zhang, Chaoyan
    Guo, Baolong
    REMOTE SENSING, 2024, 16 (18)
  • [36] Image classification with manifold learning for out-of-sample data
    Han, Yahong
    Xu, Zhongwen
    Ma, Zhigang
    Huang, Zi
    SIGNAL PROCESSING, 2013, 93 (08) : 2169 - 2177
  • [37] Hierarchical discriminant manifold learning for dimensionality reduction and image classification
    Chen, Weihai
    Zhao, Changchen
    Ding, Kai
    Wu, Xingming
    Chen, Peter C. Y.
    JOURNAL OF ELECTRONIC IMAGING, 2015, 24 (05)
  • [38] A NOVEL MANIFOLD LEARNING FOR DIMENSIONALITY REDUCTION AND CLASSIFICATION WITH HYPERSPECTRAL IMAGE
    Zheng, Zezhong
    Chen, Pengxu
    Zhu, Mingcang
    Huang, Zhiqin
    Lu, Yufeng
    Feng, Yicong
    Li, Jiang
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [39] Discriminant locality preserving projection on Grassmann Manifold for image-set classification
    Li, Benchao
    Wang, Ting
    Ran, Ruisheng
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (02):
  • [40] Dimensionality reduction on the symmetric positive definite manifold with application to image set classification
    Chu, Li
    Wu, Xiao-Jun
    JOURNAL OF ELECTRONIC IMAGING, 2020, 29 (04)