Lattice-Based Zero-Knowledge Arguments for Integer Relations

被引:19
|
作者
Libert, Benoit [1 ,2 ]
Ling, San [3 ]
Khoa Nguyen [3 ]
Wang, Huaxiong [3 ]
机构
[1] CNRS, Lab LIP, Lyon, France
[2] Univ Lyon, CNRS, ENSL, Inria,UCBL,ENS Lyon,Lab LIP, Lyon, France
[3] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore, Singapore
来源
基金
欧盟地平线“2020”;
关键词
ANONYMOUS CREDENTIALS; SIGNATURE SCHEMES; SECURE; ACCUMULATORS; PROTOCOLS; PROOFS;
D O I
10.1007/978-3-319-96881-0_24
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We provide lattice-based protocols allowing to prove relations among committed integers. While the most general zero-knowledge proof techniques can handle arithmetic circuits in the lattice setting, adapting them to prove statements over the integers is non-trivial, at least if we want to handle exponentially large integers while working with a polynomial-size modulus q. For a polynomial L, we provide zero-knowledge arguments allowing a prover to convince a verifier that committed L-bit bitstrings x, y and z are the binary representations of integers X, Y and Z satisfying Z = X + Y over Z. The complexity of our arguments is only linear in L. Using them, we construct arguments allowing to prove inequalities X < Z among committed integers, as well as arguments showing that a committed X belongs to a public interval [alpha, beta], where alpha and beta can be arbitrarily large. Our range arguments have logarithmic cost (i.e., linear in L) in the maximal range magnitude. Using these tools, we obtain zero-knowledge arguments showing that a committed element X does not belong to a public set S using <(O)over tilde>(n center dot log vertical bar S vertical bar) bits of communication, where n is the security parameter. We finally give a protocol allowing to argue that committed L-bit integers X, Y and Z satisfy multiplicative relations Z = XY over the integers, with communication cost subquadratic in L. To this end, we use our protocol for integer addition to prove the correct recursive execution of Karatsuba's multiplication algorithm. The security of our protocols relies on standard lattice assumptions with polynomial modulus and polynomial approximation factor.
引用
收藏
页码:700 / 732
页数:33
相关论文
共 50 条
  • [31] Classical zero-knowledge arguments for quantum computations
    Vidick, Thomas
    Zhang, Tina
    QUANTUM, 2020, 4
  • [32] On diophantine complexity and statistical zero-knowledge arguments
    Lipmaa, H
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2003, 2003, 2894 : 398 - 415
  • [33] Compact zero-knowledge arguments for Blum integers ☆
    Maire, Jules
    Vergnaud, Damien
    THEORETICAL COMPUTER SCIENCE, 2025, 1038
  • [34] Zero-Knowledge Arguments for Subverted RSA Groups
    Kolonelos, Dimitris
    Maller, Mary
    Volkhov, Mikhail
    PUBLIC-KEY CRYPTOGRAPHY - PKC 2023, PT II, 2023, 13941 : 512 - 541
  • [35] Efficient Zero-Knowledge Arguments For Paillier Cryptosystem
    Gong, Borui
    Lau, Wang Fat
    Au, Man Ho
    Yang, Rupeng
    Xue, Haiyang
    Li, Lichun
    45TH IEEE SYMPOSIUM ON SECURITY AND PRIVACY, SP 2024, 2024, : 1813 - 1831
  • [36] Sublinear Zero-Knowledge Arguments for RAM Programs
    Mohassel, Payman
    Rosulek, Mike
    Scafuro, Alessandra
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2017, PT I, 2017, 10210 : 501 - 531
  • [37] Non-interactive zero-knowledge arguments for voting
    Groth, J
    APPLIED CRYPTOGRAPHY AND NETWORK SECURITY, PROCEEDINGS, 2005, 3531 : 467 - 482
  • [38] ZERO-KNOWLEDGE SUCCINCT NON-INTERACTIVE ARGUMENTS OF KNOWLEDGE BASED ON SETS OF POLYNOMIALS
    Martynenkov, I. V.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2023, (59): : 20 - 57
  • [39] Simplified Design for Concurrent Statistical Zero-Knowledge Arguments
    魏普文
    张国艳
    张立江
    王小云
    Tsinghua Science and Technology, 2009, 14 (02) : 255 - 263
  • [40] Efficient Succinct Zero-Knowledge Arguments in the CL Framework
    Beaugrand, Agathe
    Castagnos, Guilhem
    Laguillaumie, Fabien
    JOURNAL OF CRYPTOLOGY, 2025, 38 (01)