Cross-view similarity exploration for unsupervised cross-domain person re-identification

被引:16
|
作者
Zhou, Shuren [1 ]
Wang, Ying [1 ]
Zhang, Fan [1 ]
Wu, Jie [1 ]
机构
[1] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2021年 / 33卷 / 09期
关键词
Person re-identification; Cross-view; StarGAN; Incremental optimization; SELF-SIMILARITY; ADAPTATION;
D O I
10.1007/s00521-020-05566-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the existence of a domain gap between different domains, when a model trained on one domain is applied to other domain, performance will drop dramatically. For the moment, some of the solutions are concentrating on reducing data distribution discrepancy in different domains, but they ignore unlabeled samples in the target domain. To address this problem, we propose the cross-view similarity exploration (CVSE) method, which combines style-transferred samples to optimize the CNN model and the relationship between samples. It mainly includes two stages. In stage-I, we use starGAN to train a style transfer model, which generates images of multiple camera styles for increasing the quantity and diversity of samples. In stage-II, we propose incremental optimization learning, which iterates between similarity grouping and CNN model optimization to progressively explore the potential similarities of all training samples. Furthermore, with the purpose of reducing the impact of label noise on performance, we propose a new ranking-guided triplet loss, which is on the basis of similarity and does not require any label to select reliable triple samples. We perform a mass of experiments on Market-1501, and DukeMTMC-reID datasets prove that the proposed CVSE is competitive to the most advanced methods.
引用
收藏
页码:4001 / 4011
页数:11
相关论文
共 50 条
  • [41] Generalizable Metric Network for Cross-Domain Person Re-Identification
    Qi, Lei
    Liu, Ziang
    Shi, Yinghuan
    Geng, Xin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 9039 - 9052
  • [42] PROXY TASK LEARNING FOR CROSS-DOMAIN PERSON RE-IDENTIFICATION
    Huang, Houjing
    Chen, Xiaotang
    Huang, Kaiqi
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [43] Biclustering Collaborative Learning for Cross-Domain Person Re-Identification
    Pang, Zhiqi
    Guo, Jifeng
    Sun, Wenbo
    Li, Shi
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 2142 - 2146
  • [44] Influence of Structure Information for Cross-domain Person Re-identification
    Wang, Nuoran
    Zhang, Cuiping
    Lv, Shijie
    Luo, Yiming
    Ding, Xin
    Liu, Shuang
    Zhang, Zhong
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, VOL. 1, 2022, 878 : 49 - 55
  • [45] Study of cross-domain person re-identification based on DCGAN
    Fang, Wei
    Yi, Weinan
    Pang, Lin
    Sheng, Victor S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (25) : 36551 - 36565
  • [46] Cross-Domain Person Re-Identification Based on Feature Fusion
    Luo, Xianjun
    Ouyang, Zhi
    Du, Nisuo
    Song, Jingkuan
    Wei, Qin
    IEEE ACCESS, 2021, 9 : 98327 - 98336
  • [47] Cross-domain Person Re-identification on Adaptive Fusion Network
    Guo Y.-C.
    Feng F.
    Yan G.
    Hao X.-K.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (11): : 2744 - 2756
  • [48] Adaptive Cross-domain Learning for Generalizable Person Re-identification
    Zhang, Pengyi
    Dou, Huanzhang
    Yu, Yunlong
    Li, Xi
    COMPUTER VISION - ECCV 2022, PT XIV, 2022, 13674 : 215 - 232
  • [49] CROSS-VIEW IDENTICAL PART AREA ALIGNMENT FOR PERSON RE-IDENTIFICATION
    Xu, Dongshu
    Chen, Jun
    Liang, Chao
    Wang, Zheng
    Hu, Ruimin
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 2462 - 2466
  • [50] PAC-GAN: An effective pose augmentation scheme for unsupervised cross-view person re-identification
    Zhang, Chengyuan
    Zhu, Lei
    Zhang, ShiChao
    Yu, Weiren
    NEUROCOMPUTING, 2020, 387 : 22 - 39