Soliton, breather, lump and their interaction solutions of the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation

被引:0
|
作者
Liu, Yaqing [1 ]
Wen, Xiao-Yong [1 ]
机构
[1] Beijing Informat Sci & Technol, Sch Appl Sci, Beijing, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2019年 / 2019卷 / 01期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Hirota bilinear method; NNV equation; N-soliton solution; Interaction solution; INTEGRABILITY; TRANSFORM; HIERARCHY;
D O I
10.1186/s13662-019-2271-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, the (2 + 1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation is investigated. Hirota's bilinear method is used to determine the N-soliton solutions for this equation, from which the M-lump solutions are obtained by using long wave limit when N is even (i. e., N = 2M). Then, taking N = 5 as an example, we discuss some novel mixed lump-soliton and lump-soliton-breather solutions by using long wave limit and choosing special conjugate complex parameters from the five-soliton solution. Figures are plotted to reveal the dynamical features of such obtained lump and mixed interaction solutions. These results may be useful for understanding the propagation phenomena of nonlinear localized waves.
引用
收藏
页数:11
相关论文
共 50 条
  • [42] Compacton, peakon, and foldon structures in the (2+1)-dimensional Nizhnik-Novikov-Veselov equation
    Zhang, JF
    Meng, JP
    Wu, FM
    Si, JQ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (01) : 7 - 14
  • [43] Doubly periodic wave structures of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation
    Ma, Z. Y.
    Hu, Y. H.
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [44] Painleve analysis, integrability and exact solutions for a (2+1)-dimensional generalized Nizhnik-Novikov-Veselov equation
    Xu, Gui-Qiong
    Deng, Shu-Fang
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (11):
  • [45] Characteristics of the breathers, rogue waves and soliton waves in a (2+1)-dimensional generalized Nizhnik-Novikov-Veselov equation
    Wang, Xiu-Bin
    Han, Bo
    MODERN PHYSICS LETTERS B, 2019, 33 (03):
  • [46] Combined wave solutions of the (2+1)-dimensional generalized Nizhnik-Novikov-Veselov system
    Dai, Chao-Qing
    Wang, Yue-Yue
    PHYSICS LETTERS A, 2008, 372 (11) : 1810 - 1815
  • [47] Elastic and Inelastic Interaction Behaviours for the (2+1)-Dimensional Nizhnik-Novikov-Veselov Equation in Water Waves
    Zhao, Li-Hua
    Dai, Chao-Qing
    Wang, Yue-Yue
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2013, 68 (12): : 735 - 743
  • [48] Compacton and foldon excitations in the generalized (2+1)-dimensional Nizhnik-Novikov-Veselov equation
    Huang, WH
    Zhang, JF
    Qiu, WG
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2004, 59 (4-5): : 250 - 256
  • [49] Fractal solutions of the Nizhnik-Novikov-Veselov equation
    Lou, SY
    Tang, XY
    Chen, CL
    CHINESE PHYSICS LETTERS, 2002, 19 (06) : 769 - 771
  • [50] New Exact Solutions of the (2+1)-Dimensional Asymmetric Nizhnik-Novikov-Veselov System
    Chao-Qing Dai
    Sheng-Sheng Wu
    Xu Cen
    International Journal of Theoretical Physics, 2008, 47 : 1286 - 1293