Combining clinical data with medical knowledge improves prediction models for NSCLC after (Chemo) radiotherapy

被引:1
|
作者
Dehing, C.
van der Weide, H.
Wanders, S.
Boersma, L.
De Ruysscher, D.
Nijsten, B.
Steck, H.
Krishnan, S.
Rao, R. B.
Lambin, P.
机构
[1] MAASTRO Clin, Maastricht, Netherlands
[2] Univ Maastricht GROW, Maastricht, Netherlands
[3] Siemens Med Solut, Philadelphia, PA USA
来源
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS | 2006年 / 66卷 / 03期
关键词
D O I
10.1016/j.ijrobp.2006.07.899
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
2488
引用
收藏
页码:S482 / S482
页数:1
相关论文
共 50 条
  • [31] Combining Gene Mutation with Transcriptomic Data Improves Outcome Prediction in Myelodysplastic Syndromes
    Sauta, Elisabetta
    Zampini, Matteo
    Dall'Olio, Daniele
    Sala, Claudia
    Todisco, Gabriele
    Travaglino, Erica
    Lanino, Luca
    Astrid Tentori, Cristina
    Maggioni, Giulia
    D'Amico, Saverio
    Asti, Gianluca
    Dall'Olio, Lorenzo
    Mosca, Ettore
    Ubezio, Marta
    Campagna, Alessia
    Riva, Elena
    Bicchieri, Marilena
    Savevski, Victor
    Santoro, Armando
    Kordasti, Shahram
    Santini, Valeria
    Diez-Campelo, Maria
    Sophie Kubasch, Anne
    Platzbecker, Uwe
    Fenaux, Pierre
    Zhao, Lin Pierre
    Zeidan, Amer M.
    Haferlach, Torsten
    Castellani, Gastone
    Giovanni Della Porta, Matteo
    BLOOD, 2023, 142
  • [32] Combining Machine Learning with Metabolomic and Embryologic Data Improves Embryo Implantation Prediction
    Cheredath, Aswathi
    Uppangala, Shubhashree
    Asha, C. S.
    Jijo, Ameya
    Lakshmi, Vani R.
    Kumar, Pratap
    Joseph, David
    Gowda, Nagana G. A.
    Kalthur, Guruprasad
    Adiga, Satish Kumar
    REPRODUCTIVE SCIENCES, 2023, 30 (03) : 984 - 994
  • [33] Bias learning improves data driven models for streamflow prediction
    Lin, Yongen
    Wang, Dagang
    Meng, Yue
    Sun, Wei
    Qiu, Jianxiu
    Shangguan, Wei
    Cai, Jingheng
    Kim, Yeonjoo
    Dai, Yongjiu
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2023, 50
  • [34] Combining Donor Characteristics with Immunohistological Data Improves the Prediction of Islet Isolation Success
    Berkova, Zuzana
    Saudek, Frantisek
    Girman, Peter
    Zacharovova, Klara
    Kriz, Jan
    Fabryova, Eva
    Leontovyc, Ivan
    Koblas, Tomas
    Kosinova, Lucie
    Neskudla, Tomas
    Vavrova, Ema
    Habart, David
    Loukotova, Sarka
    Zahradnicka, Martina
    Lipar, Kvetoslav
    Voska, Ludek
    Skibova, Jelena
    JOURNAL OF DIABETES RESEARCH, 2016, 2016
  • [35] Combining data and clinical expertise for algorithmic prediction of suicide attempts
    Ellis, Steven P.
    Oquendo, Maria
    Mann, John
    NEUROPSYCHOPHARMACOLOGY, 2006, 31 : S51 - S51
  • [36] Combining RDF Graph Data and Embedding Models for an Augmented Knowledge Graph
    Nikolov, Andriy
    Haase, Peter
    Herzig, Daniel M.
    Trame, Johannes
    Kozlov, Artem
    COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 977 - 980
  • [37] Prediction of Recurrence by Machine Learning in Salivary Gland Cancer Patients After Adjuvant (Chemo)Radiotherapy
    De Felice, Francesca
    Valentini, Valentino
    De Vincentiis, Marco
    Di Gioia, Cira Rosaria Tiziana
    Musio, Daniela
    Tummulo, Aida Angela
    Ricci, Ludovica Isabella
    Converti, Valeria
    Mezi, Silvia
    Messineo, Daniela
    Tenore, Gianluca
    Della Monaca, Marco
    Ralli, Massimo
    Vullo, Francesco
    Botticelli, Andrea
    Brauner, Edoardo
    Priore, Paolo
    Umberto, Romeo
    Marchetti, Paolo
    Della Rocca, Carlo
    Polimeni, Antonella
    Tombolini, Vincenzo
    IN VIVO, 2021, 35 (06): : 3355 - 3360
  • [38] Combining machine learning models of in vitro and in vivo bioassays improves rat carcinogenicity prediction
    Guan, Davy
    Fan, Kevin
    Spence, Ian
    Matthews, Slade
    REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2018, 94 : 8 - 15
  • [39] Expert knowledge vs. data-driven algorithms: Bayesian prediction models for post-radiotherapy dyspnea
    Deist, T. M.
    Jochems, A.
    Oberije, C.
    Reymen, B.
    Vandecasteele, K.
    Lievens, Y.
    Wanders, R.
    Lindberg, K.
    De Ruysscher, D.
    Van Elmpt, W.
    Vinod, S.
    Dekker, A.
    Lambin, P.
    RADIOTHERAPY AND ONCOLOGY, 2016, 119 : S63 - S63
  • [40] Prognostic nomogram combining 18F-FDG PET/CT radiomics and clinical data for stage III NSCLC survival prediction
    Zhang, Yalin
    Cui, Yongbin
    Liu, Huiling
    Chang, Cheng
    Yin, Yong
    Wang, Ruozheng
    SCIENTIFIC REPORTS, 2024, 14 (01):