Multi-Category Image Super-Resolution with Convolutional Neural Network and Multi-Task Learning

被引:3
|
作者
Urazoe, Kazuya [1 ,3 ]
Kuroki, Nobutaka [1 ]
Kato, Yu [1 ,4 ]
Ohtani, Shinya [1 ,5 ]
Hirose, Tetsuya [2 ]
Numa, Masahiro [1 ]
机构
[1] Kobe Univ, Grad Sch Engn, Kobe, Hyogo 6578501, Japan
[2] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan
[3] Panasonic Corp, Osaka, Japan
[4] EIZO Corp, Haku San, Japan
[5] Toyota Motor Co Ltd, Tokyo, Japan
关键词
super-resolution; resolution enhancement; convolutional neural network; multi-task learning; deep learning;
D O I
10.1587/transinf.2020EDP7054
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an image super-resolution technique using a convolutional neural network (CNN) and multi-task learning for multiple image categories. The image categories include natural, manga, and text images. Their features differ from each other. However, several CNNs for super-resolution are trained with a single category. If the input image category is different from that of the training images, the performance of super-resolution is degraded. There are two possible solutions to manage multi-categories with conventional CNNs. The first involves the preparation of the CNNs for every category. This solution, however, requires a category classifier to select an appropriate CNN. The second is to learn all categories with a single CNN. In this solution, the CNN cannot optimize its internal behavior for each category. Therefore, this paper presents a super-resolution CNN architecture for multiple image categories. The proposed CNN has two parallel outputs for a high-resolution image and a category label. The main CNN for the high-resolution image is a normal three convolutional layer-architecture, and the sub neural network for the category label is branched out from its middle layer and consists of two fully-connected layers. This architecture can simultaneously learn the high-resolution image and its category using multi-task learning. The category information is used for optimizing the super-resolution. In an applied setting, the proposed CNN can automatically estimate the input image category and change the internal behavior. Experimental results of 2x image magnification have shown that the average peak signal-to-noise ratio for the proposed method is approximately 0.22 dB higher than that for the conventional super-resolution with no difference in processing time and parameters. We have ensured that the proposed method is useful when the input image category is varying.
引用
收藏
页码:183 / 193
页数:11
相关论文
共 50 条
  • [41] Using a convolutional neural network for fingerling counting: A multi-task learning approach
    Goncalves, Diogo Nunes
    Acosta, Plabiany Rodrigo
    Ramos, Ana Paula Marques
    Osco, Lucas Prado
    Furuya, Danielle Elis Garcia
    Furuya, Michelle Tais Garcia
    Li, Jonathan
    Marcato Junior, Jose
    Pistori, Hemerson
    Goncalves, Wesley Nunes
    AQUACULTURE, 2022, 557
  • [42] Investigation of the Efficiency of Unsupervised Learning for Multi-task Classification in Convolutional Neural Network
    Kim, Jonghong
    Jang, Gil-Jin
    Lee, Minho
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT III, 2016, 9949 : 547 - 554
  • [43] Convolutional Neural Network with Multi-Task Learning Scheme for Acoustic Scene Classification
    Tin Lay Nwe
    Tran Huy Dat
    Ma, Bin
    2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 1347 - 1350
  • [44] Super-Resolution Image Restoration Using Convolutional Neural Network
    Yu, Nedzelskyi O.
    Lashchevska, N. O.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2023, (91): : 79 - 86
  • [45] HYPERSPECTRAL IMAGE SUPER-RESOLUTION VIA CONVOLUTIONAL NEURAL NETWORK
    Mei, Shaohui
    Yuan, Xin
    Ji, Jingyu
    Wan, Shuai
    Hou, Junhui
    Du, Qian
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4297 - 4301
  • [46] Convolutional Neural Network with Gradient Information for Image Super-Resolution
    Tang, Yinggan
    Zhu, Xiaoning
    Cui, Mingyong
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 1714 - 1719
  • [47] Text Emotion Distribution Learning via Multi-Task Convolutional Neural Network
    Zhang, Yuxiang
    Fu, Jiamei
    She, Dongyu
    Zhang, Ying
    Wang, Senzhang
    Yang, Jufeng
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 4595 - 4601
  • [48] Image super-resolution using a dilated convolutional neural network
    Lin, Guimin
    Wu, Qingxiang
    Qiu, Lida
    Huang, Xixian
    NEUROCOMPUTING, 2018, 275 : 1219 - 1230
  • [49] RCRL: Replay-based Continual Representation Learning in Multi-task Super-Resolution
    Park, Jinyong
    Kim, Minha
    Woo, Simon S.
    2022 18TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2022), 2022,
  • [50] A multi-task learning convolutional neural network for source localization in deep ocean
    Liu, Yining
    Niu, Haiqiang
    Li, Zhenglin
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2020, 148 (02): : 873 - 883