Crushing analysis under multiple impact loading cases for multi-cell triangular tubes

被引:32
|
作者
TrongNhan Tran [1 ,2 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Mechatron, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Elect & Elect Engn, Ho Chi Minh City, Vietnam
关键词
Theoretical prediction; Multi-oblique loading cases; Plastic deformation mode; Multi-cell; Triangular tube; THIN-WALLED STRUCTURES; ENERGY-ABSORPTION; CRASHWORTHINESS OPTIMIZATION; SQUARE TUBES; THEORETICAL PREDICTION; ALUMINUM EXTRUSIONS; COLUMNS; DESIGN; SIMULATION; ABSORBERS;
D O I
10.1016/j.tws.2017.01.013
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Recently, requirements for data regarding crushing force have motivated researchers to investigate the crushing behaviour of tubes. The present work aims to study the crushing of multi-cell triangular tubes made of aluminium alloy AA6060T4 using theoretical and numerical analyses under multiple impact loadings. By dividing the profile into several basic angular elements and using the Improved Simplified Super Folding Element (ISSFE) theory, theoretical equations of the mean crushing/horizontal force, and the mean bending moment are proposed to calculate the mean crushing strength of these sections. It is found that the number of "cells" in a tube's structure and to a certain extent the load angle have a considerable effect on the Specific Energy Absorption (SEA), and Mean Crushing Force (MCF). Numerical analyses were conducted, and the simulation results show a strong correlation between the crush response and the cross-section of the tubes. The analytical predictions for the MCF are compared with the FE results.
引用
收藏
页码:262 / 272
页数:11
相关论文
共 50 条
  • [41] Energy absorption characteristics of bio-inspired hierarchical multi-cell square tubes under axial crushing
    Ngoc San Ha
    Pham, Thong M.
    Hao, Hong
    Lu, Guoxing
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 201
  • [42] Crashworthiness Analysis and Multi-Objective Optimisation of Multi-Cell Windowed Structures under Dynamic Impact Loading
    Chen, Jiehao
    Liang, Xifeng
    Xu, Ping
    Yao, Shuguang
    SHOCK AND VIBRATION, 2022, 2022
  • [43] Multiobjective crashworthiness optimization of graphene type multi-cell tubes under various loading conditions
    Albak, Emre Isa
    Solmaz, Erol
    Yildiz, Ali Riza
    Ozturk, Ferruh
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2021, 43 (05)
  • [44] Crashworthiness behavior of multi-cell structures reinforced with small tubes under axial and inclined loading
    Pirmohammad, Sadjad
    Vosoughifard, Elnaz
    MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2024, 52 (12) : 10783 - 10808
  • [45] Crushing analysis and multiobjective crashworthiness optimization of combined shrinking circular tubes under impact loading
    Weiyuan Guan
    Guangjun Gao
    Yao Yu
    Structural and Multidisciplinary Optimization, 2021, 64 : 1649 - 1667
  • [46] Multiobjective crashworthiness optimization of graphene type multi-cell tubes under various loading conditions
    Emre İsa Albak
    Erol Solmaz
    Ali Rıza Yıldız
    Ferruh Öztürk
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43
  • [47] Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading
    Qi, Chang
    Yang, Shu
    Dong, Fangliang
    THIN-WALLED STRUCTURES, 2012, 59 : 103 - 119
  • [48] Crushing analysis and multiobjective crashworthiness optimization of combined shrinking circular tubes under impact loading
    Guan, Weiyuan
    Gao, Guangjun
    Yu, Yao
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 64 (03) : 1649 - 1667
  • [49] Deformation and energy absorption analysis of simple and multi-cell thin-walled tubes under quasi-static axial crushing
    Kannan, I. Vimal
    Rajkumar, R.
    INTERNATIONAL JOURNAL OF CRASHWORTHINESS, 2020, 25 (02) : 121 - 130
  • [50] Crashworthiness analysis of octagonal multi-cell tube with functionally graded thickness under multiple loading angles
    Chen, Yafeng
    Bai, Zhonghao
    Zhang, Linwei
    Wang, Yulong
    Sun, Guangyong
    Cao, Libo
    THIN-WALLED STRUCTURES, 2017, 110 : 133 - 139