Fault tolerance of self-organizing maps

被引:4
|
作者
Girau, Bernard [1 ]
Torres-Huitzil, Cesar [2 ]
机构
[1] Univ Lorraine, CNRS, LORIA, F-54000 Nancy, France
[2] Tecnol Monterrey, Campus Puebla, Puebla, Mexico
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 24期
关键词
Fault tolerance; Self-organizing maps; Hardware implementation; FPGA;
D O I
10.1007/s00521-018-3769-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bio-inspired computing principles are considered as a source of promising paradigms for fault-tolerant computation. Among bio-inspired approaches, neural networks are potentially capable of absorbing some degrees of vulnerability based on their natural properties. This calls for attention, since beyond energy, the growing number of defects in physical substrates is now a major constraint that affects the design of computing devices. However, studies have shown that most neural networks cannot be considered intrinsically fault tolerant without a proper design. In this paper, the fault tolerance of self-organizing maps (SOMs) is investigated, considering implementations targeted onto field programmable gate arrays, where the bit-flip fault model is employed to inject faults in registers. Quantization and distortion measures are used to evaluate performance on synthetic datasets under different fault ratios. Three passive techniques intended to enhance fault tolerance of SOMs during training/learning are also considered in the evaluation. We also evaluate the influence of technological choices on fault tolerance: sequential or parallel implementation, weight storage policies. Experimental results are analyzed through the evolution of neural prototypes during learning and fault injection. We show that SOMs benefit from an already desirable property: graceful degradation. Moreover, depending on some technological choices, SOMs may become very fault tolerant, and their fault tolerance even improves when weights are stored in an individualized way in the implementation.
引用
收藏
页码:17977 / 17993
页数:17
相关论文
共 50 条
  • [31] Incremental learning with self-organizing maps
    Gepperth, Alexander
    Karaoguz, Cem
    2017 12TH INTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION, CLUSTERING AND DATA VISUALIZATION (WSOM), 2017, : 153 - 160
  • [32] Self-organizing maps for texture classification
    Nedyalko Petrov
    Antoniya Georgieva
    Ivan Jordanov
    Neural Computing and Applications, 2013, 22 : 1499 - 1508
  • [33] Self-organizing maps with refractory period
    Neme, Antonio
    Mireles, Victor
    ARTIFICIAL NEURAL NETWORKS - ICANN 2007, PT 2, PROCEEDINGS, 2007, 4669 : 369 - +
  • [34] ON THE ORDERING CONDITIONS FOR SELF-ORGANIZING MAPS
    BUDINICH, M
    TAYLOR, JG
    NEURAL COMPUTATION, 1995, 7 (02) : 284 - 289
  • [35] A NOTE ON SELF-ORGANIZING SEMANTIC MAPS
    BEZDEK, JC
    PAL, NR
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (05): : 1029 - 1036
  • [36] SELF-ORGANIZING MAPS FOR INTERNAL REPRESENTATIONS
    RITTER, H
    PSYCHOLOGICAL RESEARCH-PSYCHOLOGISCHE FORSCHUNG, 1990, 52 (2-3): : 128 - 136
  • [37] A CHIP FOR SELF-ORGANIZING FEATURE MAPS
    RUPING, S
    GOSER, K
    RUCKERT, U
    IEEE MICRO, 1995, 15 (03) : 57 - 59
  • [38] Fuzzy Relational Self-Organizing Maps
    Khalilia, Mohammed
    Popescu, Mihail
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [39] Self-organizing maps of symbol strings
    Kohonen, T
    Somervuo, P
    NEUROCOMPUTING, 1998, 21 (1-3) : 19 - 30
  • [40] Hyperparameter selection for self-organizing maps
    Utsugi, A
    NEURAL COMPUTATION, 1997, 9 (03) : 623 - 635