Pinch technique and the Batalin-Vilkovisky formalism

被引:71
|
作者
Binosi, D [1 ]
Papavassiliou, J
机构
[1] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain
[2] Univ Valencia, IFIC, CSIC, Ctr Mixto, E-46100 Burjassot, Spain
来源
PHYSICAL REVIEW D | 2002年 / 66卷 / 02期
关键词
D O I
10.1103/PhysRevD.66.025024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we take the first step towards a nondiagrammatic formulation of the pinch technique. In particular we proceed into a systematic identification of the parts of the one-loop and two-loop Feynman diagrams that are exchanged during the pinching process in terms of unphysical ghost Green's functions; the latter appear in the standard Slavnov-Taylor identity satisfied by the tree-level and one-loop three-gluon vertex. This identification allows for the consistent generalization of the intrinsic pinch technique to two loops, through the collective treatment of entire sets of diagrams, instead of the laborious algebraic manipulation of individual graphs, and sets up the stage for the generalization of the method to all orders. We show that the task of comparing the effective Green's functions obtained by the pinch technique with those computed in the background field method Feynman gauge is significantly facilitated when employing the powerful quantization framework of Batalin and Vilkovisky. This formalism allows for the derivation of a set of useful nonlinear identities, which express the background field method Green's functions in terms of the conventional (quantum) ones and auxiliary Green's functions involving the background source and the gluonic antifield; these latter Green's functions are subsequently related by means of a Schwinger-Dyson type of equation to the ghost Green's functions appearing in the aforementioned Slavnov-Taylor identity.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Batalin-Vilkovisky Formalism in the Functional Approach to Classical Field Theory
    Fredenhagen, Klaus
    Rejzner, Katarzyna
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 314 (01) : 93 - 127
  • [32] Homotopy Batalin-Vilkovisky algebras
    Galvez-Carrillo, Imma
    Tonks, Andy
    Vallette, Bruno
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2012, 6 (03) : 539 - 602
  • [33] Super Chern-Simons theory: Batalin-Vilkovisky formalism and A∞ algebras
    Cremonini, C. A.
    Grassi, P. A.
    PHYSICAL REVIEW D, 2020, 102 (02):
  • [34] Notes on Soft BRST Symmetry Breaking within the Batalin-Vilkovisky Formalism
    Radchenko, O. V.
    Reshetnyak, A. A.
    RUSSIAN PHYSICS JOURNAL, 2013, 55 (09) : 1005 - 1010
  • [35] L∞-algebras in Freedman-Townsend model and Batalin-Vilkovisky formalism
    Dai, Jialiang
    MODERN PHYSICS LETTERS A, 2022, 37 (05)
  • [36] Background field method, Batalin-Vilkovisky formalism and parametric completeness of renormalization
    Anselmi, Damiano
    PHYSICAL REVIEW D, 2014, 89 (04):
  • [37] When Ext is a Batalin-Vilkovisky algebra
    Kowalzig, Niels
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2018, 12 (03) : 1080 - 1130
  • [38] Batalin-Vilkovisky integrals in finite dimensions
    Albert, C.
    Bleile, B.
    Froehlich, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (01)
  • [39] BATALIN-VILKOVISKY ANALYSIS OF SUPERSYMMETRIC SYSTEMS
    BAULIEU, L
    BELLON, M
    OUVRY, S
    WALLET, JC
    PHYSICS LETTERS B, 1990, 252 (03) : 387 - 394
  • [40] Batalin-Vilkovisky Quantization and Supersymmetric Twists
    Safronov, Pavel
    Williams, Brian R.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (01) : 35 - 77