Hyperprior Induced Unsupervised Disentanglement of Latent Representations

被引:0
|
作者
Ansari, Abdul Fatir [1 ]
Soh, Harold [1 ]
机构
[1] Natl Univ Singapore, Dept Comp Sci, Singapore, Singapore
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address the problem of unsupervised disentanglement of latent representations learnt via deep generative models. In contrast to current approaches that operate on the evidence lower bound (ELBO), we argue that statistical independence in the latent space of VAEs can be enforced in a principled hierarchical Bayesian manner. To this effect, we augment the standard VAE with an inverse-Wishart (IW) prior on the co-variance matrix of the latent code. By tuning the IW parameters, we are able to encourage (or discourage) independence in the learnt latent dimensions. Extensive experimental results on a range of datasets (2DShapes, 3DChairs, 3DFaces and CelebA) show our approach to outperform the beta-VAE and is competitive with the state-of-the-art FactorVAE. Our approach achieves significantly better disentanglement and reconstruction on a new dataset (CorrelatedEllipses) which introduces correlations between the factors of variation.
引用
收藏
页码:3175 / 3182
页数:8
相关论文
共 50 条
  • [31] Unsupervised Representation Disentanglement of Text: An Evaluation on Synthetic Datasets
    Zhang, Lan
    Prokhorov, Victor
    Shareghi, Ehsan
    REPL4NLP 2021: PROCEEDINGS OF THE 6TH WORKSHOP ON REPRESENTATION LEARNING FOR NLP, 2021, : 128 - 140
  • [32] Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction
    Liao, Haofu
    Lin, Wei-An
    Yuan, Jianbo
    Zhou, S. Kevin
    Luo, Jiebo
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI, 2019, 11769 : 203 - 211
  • [33] Unsupervised Disentanglement of Linear-Encoded Facial Semantics
    Zheng, Yutong
    Huang, Yu-Kai
    Tao, Ran
    Shen, Zhiqiang
    Savvides, Marios
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3916 - 3925
  • [34] Unsupervised MRI motion artifact disentanglement: introducing MAUDGAN
    Safari, Mojtaba
    Yang, Xiaofeng
    Chang, Chih-Wei
    Qiu, Richard L. J.
    Fatemi, Ali
    Archambault, Louis
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (11):
  • [35] Interpretable Visual Neural Decoding with Unsupervised Semantic Disentanglement
    Zhou, Qiongyi
    Du, Changde
    Li, Dan
    Wen, Bincheng
    Chang, Le
    He, Huiguang
    MACHINE INTELLIGENCE RESEARCH, 2025,
  • [36] Unsupervised Disentanglement Learning via Dirichlet Variational Autoencoder
    Xu, Kunxiong
    Fan, Wentao
    Liu, Xin
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE. THEORY AND APPLICATIONS, IEA/AIE 2023, PT I, 2023, 13925 : 341 - 352
  • [37] Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation
    Wei, Yuxiang
    Shi, Yupeng
    Liu, Xiao
    Ji, Zhilong
    Gao, Yuan
    Wu, Zhongqin
    Zuo, Wangmeng
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6701 - 6710
  • [38] Unsupervised meta-learning via spherical latent representations and dual VAE-GAN
    Fan, Wentao
    Huang, Hanyuan
    Liang, Chen
    Liu, Xin
    Peng, Shu-Juan
    APPLIED INTELLIGENCE, 2023, 53 (19) : 22775 - 22788
  • [39] Unsupervised meta-learning via spherical latent representations and dual VAE-GAN
    Wentao Fan
    Hanyuan Huang
    Chen Liang
    Xin Liu
    Shu-Juan Peng
    Applied Intelligence, 2023, 53 : 22775 - 22788
  • [40] A practical guide for generating unsupervised, spectrogram-based latent space representations of animal vocalizations
    Thomas, Mara
    Jensen, Frants H.
    Averly, Baptiste
    Demartsev, Vlad
    Manser, Marta B.
    Sainburg, Tim
    Roch, Marie A.
    Strandburg-Peshkin, Ariana
    JOURNAL OF ANIMAL ECOLOGY, 2022, 91 (08) : 1567 - 1581