SnO2 nanoparticles anchored on vertically aligned graphene with a high rate, high capacity, and long life for lithium storage

被引:40
|
作者
Li, Na [1 ]
Sonsg, Huawei [1 ]
Cui, Hao [1 ,2 ]
Wang, Chengxin [1 ,2 ]
机构
[1] Sun Yat Sen Zhongshan Univ, Sch Phys Sci & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou, Guangdong, Peoples R China
[2] Sun Yat Sen Zhongshan Univ, Key Lab Low Carbon Chem & Energy Conservat Guangd, Guangzhou, Guangdong, Peoples R China
关键词
vertically aligned graphene; SnO2; nanoparticles; hydrothermal; long lifespan; ONE-POT SYNTHESIS; HOLLOW NANOSPHERES; CARBON NANOTUBES; MESOPOROUS SNO2; HIGH-POWER; TIN OXIDE; ANODE; PERFORMANCE; COMPOSITE; ELECTRODES;
D O I
10.1016/j.electacta.2014.03.081
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
As a high-theoretical-capacity (782 mA hg-1), low-cost and low-toxicity material, SnO2 has attracted intense interest for use as an anode electrode for lithium-ion batteries (LIBs). Despite intensive study, the practical use of SnO2-based anodes is hindered by their poor capacity retention and low rate capacity resulting from their large specific-volume changes and kinetic limitations in ion/electron transfer during the lithium ion insertion/extraction process. Improving the performance of SnO2-based electrodes has become one of the most popular scientific and industrial efforts. Herein, we present a type of SnO2-graphene composite anode in which SnO2 nanoparticles are uniformly anchored on both sides of vertically aligned graphene nanosheets (SnO2-VAGN-SnO2). The VAGNs sandwiched by the nanopartides can supply rapid ion and electron transport pathways for Li+ and e-. Such integrated electrodes exhibit high specific capacity and excellent cycling stability, even at high current densities. The cells can cycle more than 5,000 times and retain a reversible capacity of 210 mA h g-1 at 9 A g-1. A high current density of up to 20 A g-1 is achieved, and the power and energy density can reach 1576.75W kg-1 and 110.14 Wh kg-1, respectively. These performances indicate that the composite could offer the advantages of both LIBs (high energy density) and supercapacitors (high power density). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:670 / 678
页数:9
相关论文
共 50 条
  • [21] Ultrafast anchored SnO2 nanoparticles revealed capacity fade and hysteresis abated stable cycling performance for high-rate lithium-ion batteries
    Palanisamy, Manikandan
    Jamison, Colin
    Sun, Xing
    Qi, Zhimin
    Wang, Haiyan
    Pol, Vilas G.
    CARBON, 2021, 185 : 608 - 618
  • [22] Preparation of graphene/SnO2 composite as high capacity anode material for lithium ion batteries
    Guo, Qi
    Chen, Shanshan
    Qin, Xue
    MATERIALS LETTERS, 2014, 119 : 4 - 7
  • [23] Fluorine-doped SnO2 nanoparticles anchored on reduced graphene oxide as a high-performance lithium ion battery anode
    Cui, Dongming
    Zheng, Zhong
    Peng, Xue
    Li, Teng
    Sun, Tingting
    Yuan, Liangjie
    JOURNAL OF POWER SOURCES, 2017, 362 : 20 - 26
  • [24] Engineering microtubular SnO2 architecture assembled by interconnected nanosheets for high lithium storage capacity
    Zhao, Xinyu
    Liu, Bing
    Cao, Minhua
    RSC ADVANCES, 2015, 5 (38) : 30053 - 30061
  • [25] Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity
    Lou, Xiong Wen
    Wang, Yong
    Yuan, Chongli
    Lee, Jim Yang
    Archer, Lynden A.
    ADVANCED MATERIALS, 2006, 18 (17) : 2325 - +
  • [26] SnO2?ZrO2 nanoparticles embedded in carbon nanotubes as a large capacity, high rate and long lifetime anode for lithium-ion batteries
    Deng, Xiaoqian
    Zhu, Menghan
    Ke, Jin
    Li, Wenrui
    Feng, Yefeng
    Yang, Bingwen
    Xiong, Deping
    Feng, Zuyong
    He, Miao
    CERAMICS INTERNATIONAL, 2021, 47 (10) : 14301 - 14310
  • [27] Vertically aligned cobalt oxide nanowires on graphene networks for high-performance lithium storage
    Cao, Liujun
    Ma, Lulu
    Xiao, Peng
    Zhang, Yunhuai
    Zhang, Shengtao
    Yang, Shubin
    NANOTECHNOLOGY, 2014, 25 (44)
  • [28] Ultrathin SnO2 nanosheets anchored on graphene with improved electrochemical kinetics for reversible lithium and sodium storage
    Chang, Limin
    Yi, Zheng
    Wang, Zhaomin
    Wang, Limin
    Cheng, Yong
    APPLIED SURFACE SCIENCE, 2019, 484 : 646 - 654
  • [29] SnO2 Quantum Dots@Graphene Oxide as a High-Rate and Long-Life Anode Material for Lithium-Ion Batteries
    Zhao, Kangning
    Zhang, Lei
    Xia, Rui
    Dong, Yifan
    Xu, Wangwang
    Niu, Chaojiang
    He, Liang
    Yan, Mengyu
    Qu, Longbin
    Mai, Liqiang
    SMALL, 2016, 12 (05) : 588 - 594
  • [30] High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries
    Lian, Peichao
    Zhu, Xuefeng
    Liang, Shuzhao
    Li, Zhong
    Yang, Weishen
    Wang, Haihui
    ELECTROCHIMICA ACTA, 2011, 56 (12) : 4532 - 4539