The asymptotic structure of high-Reynolds number boundary layers

被引:0
|
作者
Monkewitz, Peter A. [1 ]
Nagib, Hassan M. [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Swiss Fed Inst Technol, LMF, CH-1015 Lausanne, Switzerland
[2] IIT, Dept Mech & Aerosp Engn, Chicago, IL 60616 USA
关键词
mean velocity profiles in turbulent channel and pipe flows; Matched asymptotics; Infinite Re limit;
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The methodology of matched asymptotic expansions or "generalized boundary layer theory" for large Reynolds number Re, (based on friction velocity and outer length scale), pioneered by Prandd [1], is used to extract from measured or computed mean velocity profiles in turbulent channel and pipe flows their limiting behavior at infinite Re-tau After fitting an "outer expansion" in terms of suitable functions of the outer wall-normal coordinate eta to the data, the construction of composite expansions is used "in reverse" to extract the "inner expansion". Its leading term of order O(Re-tau(0)) represents the near-wall solution for infinite Re-tau which is found to be identical for channels and pipes. For large values of the inner wallnormal coordinate y(+) this limiting inner expansion for the strearnwise velocity is furthermore shown to be well described by Prandtl's famous "log-law".
引用
收藏
页码:355 / +
页数:2
相关论文
共 50 条
  • [41] On the Formation Mechanisms of Artificially Generated High Reynolds Number Turbulent Boundary Layers
    Eduardo Rodríguez-López
    Paul J. K. Bruce
    Oliver R. H. Buxton
    Boundary-Layer Meteorology, 2016, 160 : 201 - 224
  • [42] Spanwise velocity statistics in high-Reynolds-number turbulent boundary layers
    Baidya, R.
    Philip, J.
    Hutchins, N.
    Monty, J. P.
    Marusic, I.
    JOURNAL OF FLUID MECHANICS, 2021, 913 (913)
  • [43] Large Eddy Simulation of high-Reynolds number flow past a rotating cylinder
    Karabelas, S. J.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2010, 31 (04) : 518 - 527
  • [44] Turbulence in supersonic boundary layers at moderate Reynolds number
    Pirozzoli, Sergio
    Bernardini, Matteo
    JOURNAL OF FLUID MECHANICS, 2011, 688 : 120 - 168
  • [45] The spatial structure of the logarithmic region in very-high-Reynolds-number rough wall turbulent boundary layers
    Heisel, Michael
    Dasari, Teja
    Liu, Yun
    Hong, Jiarong
    Coletti, Filippo
    Guala, Michele
    JOURNAL OF FLUID MECHANICS, 2018, 857 : 704 - 747
  • [46] Low-Reynolds-number turbulent boundary layers
    Erm, Lincoln P., 1600, (230):
  • [47] Applications of unstructured hybrid grid method to high-Reynolds number viscous flows
    Nakahashi, K
    Sharov, D
    Kano, S
    Kodera, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1999, 31 (01) : 97 - 111
  • [48] Large-eddy simulations of dense-gas dispersion within a high-Reynolds number turbulent boundary layer
    Wingstedt, E. M. M.
    Vartdal, M.
    Reif, B. A. Pettersson
    PHYSICS OF FLUIDS, 2017, 29 (09)
  • [49] Spiral instability modes on rotating cones in high-Reynolds number axial flow
    Tambe, Sumit
    Schrijer, Ferry
    Veldhuis, Leo
    Gangoli Rao, Arvind
    PHYSICS OF FLUIDS, 2022, 34 (03)
  • [50] Stable simulation of fluid flow with high-Reynolds number using Ehrenfests' steps
    Brownlee, R.
    Gorban, A. N.
    Levesley, J.
    NUMERICAL ALGORITHMS, 2007, 45 (1-4) : 389 - 408