Thermally activated reversible shape switch of polymer particles

被引:71
|
作者
Gong, Tao [1 ]
Zhao, Kun [1 ]
Wang, Wenxi [1 ]
Chen, Hongmei [1 ]
Wang, Lin [1 ]
Zhou, Shaobing [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Adv Technol Mat, Chengdu 610031, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
EPSILON-CAPROLACTONE; MEMORY POLYMERS; CELLULAR INTERNALIZATION; MECHANICAL-PROPERTIES; TEMPERATURE MEMORY; DRUG CARRIERS; DESIGN; DELIVERY; NANOCOMPOSITES; COMPOSITES;
D O I
10.1039/c4tb01155d
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The particles that can reversibly switch shape in response to an environmental stimulus are preferable for controlling the performance of drug carriers. In this work, we present a facile strategy towards the design and fabrication of polymer particles that can reversibly switch their shape on the basis of a biocompatible and biodegradable polymer network containing well-defined six-arm poly(ethylene glycol)-poly(epsilon-caprolactone) (6A PEG-PCL). These polymer particles have a capacity of reversibly changing shape from spherical to elliptical either extracellularly or intracellularly with the cyclic heating and cooling between 43 degrees C and 0 degrees C under a stress-free condition via a reversible two-way shape memory effect (2W-SME) of a polymer matrix. This study of the shape-switching particles opens up exciting possibilities for engineering dynamically shape-switching drug delivery carriers to either avoid or promote phagocytosis.
引用
收藏
页码:6855 / 6866
页数:12
相关论文
共 50 条
  • [21] Fatigue Strengthening of Metallic Structures with a Thermally Activated Shape Memory Alloy Fiber-Reinforced Polymer Patch
    Zheng, B.
    Dawood, M.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2017, 21 (04)
  • [22] Collection of chemical substances in water using a thermally reversible polymer
    Ohyama, T
    Arai, K
    Nakagawa, T
    Matsubara, C
    Takamura, K
    BUNSEKI KAGAKU, 1997, 46 (01) : 59 - 62
  • [23] CARIVERSE™ resin:: A thermally reversible network polymer for electronic applications
    Chang, BTA
    Dubois, DA
    Fan, M
    Gelles, DL
    Iyer, SR
    Mohindra, S
    Tutunjian, PN
    Wong, PK
    Wright, WJ
    49TH ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE - 1999 PROCEEDINGS, 1999, : 49 - 55
  • [24] Polymer Electrochemiluminescence Featuring Thermally Activated Delayed Fluorescence
    Huang, Ping
    Zhang, Baohua
    Hu, Qiong
    Zhao, Bolin
    Zhu, Yunhui
    Zhang, Yuwei
    Kong, Yi
    Zeng, Zihui
    Bao, Yu
    Wang, Wei
    Cheng, Yanxiang
    Niu, Li
    CHEMPHYSCHEM, 2021, 22 (08) : 726 - 732
  • [25] Thermally reversible shape transformation of nano-patterned PNIPAAm hydrogel
    Kim, Byulhana
    Lee, Jung-Soo
    POLYMER BULLETIN, 2021, 78 (06) : 3353 - 3361
  • [26] Thermally driven microfluidic pumping via reversible shape memory polymers
    Robertson, J. M.
    Rodriguez, R. X.
    Holmes, L. R., Jr.
    Mather, P. T.
    Wetzel, E. D.
    SMART MATERIALS AND STRUCTURES, 2016, 25 (08)
  • [27] Thermally reversible shape transformation of nano-patterned PNIPAAm hydrogel
    Byulhana Kim
    Jung-Soo Lee
    Polymer Bulletin, 2021, 78 : 3353 - 3361
  • [28] Reversible Underwater Dry Adhesion of a Shape Memory Polymer
    Park, Jun Kyu
    Eisenhaure, Jeffrey D.
    Kim, Seok
    ADVANCED MATERIALS INTERFACES, 2019, 6 (03)
  • [29] An investigation of a thermally steerable electroactive polymer/shape memory polymer hybrid actuator
    Ren, Kailiang
    Bortolin, Robert S.
    Zhang, Q. M.
    APPLIED PHYSICS LETTERS, 2016, 108 (06)
  • [30] Fracture of thermally activated NiTi shape memory alloy wires
    Ramaiah, K. V.
    Saikrishna, C. N.
    Ranganath, V. R.
    Buravalla, V.
    Bhaumik, S. K.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (16-17): : 5502 - 5510