A moving object and observers

被引:4
|
作者
Berdyshev, V. I. [1 ]
机构
[1] Russian Acad Sci, Inst Math & Mech, Ural Branch, Ekaterinburg 620219, Russia
基金
俄罗斯科学基金会;
关键词
Optimal Path; Doklady Mathematic; Local Coordinate System; Safe Zone; Minimax Problem;
D O I
10.1134/S1064562415050178
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of tracking a moving object in space a"e(3) with a fixed polyhedral set of observers located in a neighborhood of the shadow sets at the vertices of a polyhedron is considered. A trajectory in a given class maximizing the shortest distance between the object and the shadow sets is characterized. The problem of maximizing the integral of this distance along piecewise linear trajectories in with ordered set of edges is reduced to searching for an optimal path on a directed edge graph.
引用
收藏
页码:643 / 645
页数:3
相关论文
共 50 条
  • [21] Quantum correlations with moving observers
    Gisin, N.
    Scarani, V.
    Stefanov, A.
    Suarez, A.
    Tittel, W.
    Zbinden, H.
    Optics and Photonics News, 2002, 13 (12):
  • [22] Moving observers in an isotropic universe
    Kak, Subhash
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (05) : 1424 - 1430
  • [23] Shifts of attention in depth for moving observers
    Miura, T
    Shinohara, K
    Kanda, K
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 1996, 31 (3-4) : 12411 - 12411
  • [24] INTEGRABLE TRANSFORMATIONS BETWEEN MOVING OBSERVERS
    CASHMORE, DJ
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1963, 81 (519): : 181 - &
  • [25] Use of speed cues in the detection of moving objects by moving observers
    Royden, Constance S.
    Moore, Kathleen D.
    VISION RESEARCH, 2012, 59 : 17 - 24
  • [26] OBJECT CLASSIFICATION FOR HUMAN AND IDEAL OBSERVERS
    LIU, ZL
    KNILL, DC
    KERSTEN, D
    VISION RESEARCH, 1995, 35 (04) : 549 - 568
  • [27] An object and a group of observers in a normed space
    V. I. Berdyshev
    Proceedings of the Steklov Institute of Mathematics, 2011, 273 : 68 - 73
  • [28] An Object and a Group of Observers in a Normed Space
    Berdyshev, V. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 273 : S68 - S73
  • [29] OBJECT DISCRIMINATION FOR HUMAN AND IDEAL OBSERVERS
    LIU, Z
    KERSTEN, D
    KNILL, DC
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1992, 33 (04) : 825 - 825
  • [30] Ideal observers of visual object recognition
    Liu, ZL
    THEORETICAL ASPECTS OF NEURAL COMPUTATION: A MULTIDISCIPLINARY PERSPECTIVE, 1998, : 145 - 154