Removal of numerical instability in the solution of an inverse heat conduction problem

被引:25
|
作者
Pourgholi, R. [1 ]
Azizi, N.
Gasimov, Y. S. [2 ]
Aliev, F. [2 ]
Khalafi, H. K. [1 ]
机构
[1] Damghan Univ Basic Sci, Fac Math & Comp Sci, Damghan, Iran
[2] Baku State Univ, Inst Appl Math, AZ-1148 Baku, Azerbaijan
关键词
Inverse heat conduction problem; Existence; Uniqueness; Instability;
D O I
10.1016/j.cnsns.2008.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider an inverse heat conduction problem (IHCP). A set of temperature measurements at a single sensor location inside the heat conduction body is required. Using a transformation, the ill-posed IHCP becomes a Cauchy problem. Since the solution of Cauchy problem, exists and is unique but not always stable, the ill-posed problem is closely approximated by a well-posed problem. For this new well-posed problem, the existence, uniqueness, and stability of the solution are proved. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2664 / 2669
页数:6
相关论文
共 50 条
  • [31] NUMERICAL STABILITY INVESTIGATION OF THE INVERSE HEAT-CONDUCTION PROBLEM
    CIALKOWSKI, MJ
    GRYSA, K
    JANKOWSKI, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (06): : T558 - T560
  • [32] Numerical Simulation for Solving an Inverse Boundary Heat Conduction Problem
    Yaparova, N. M.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2013, 6 (03): : 112 - 124
  • [33] A local marching treatment for numerical inverse heat conduction problem
    Zhu, JX
    2003 IEEE CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS, 2003, : 149 - 152
  • [34] Numerical solution of nonhomogeneous backward heat conduction problem
    Yue, Sufang
    Zhang, Hongmei
    Ma, Zongli
    International Journal of Applied Mathematics and Statistics, 2013, 42 (12): : 257 - 264
  • [35] Numerical Solution of Nonhomogeneous Backward Heat Conduction Problem
    Yue, Sufang
    Zhang, Hongmei
    Ma, Zongli
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 42 (12): : 257 - 264
  • [36] An application of DHW algorithm for the solution of inverse heat conduction problem
    Gembarovic, J.
    Loeffler, M.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2006, 27 (04) : 1264 - 1273
  • [37] The solution of an inverse heat conduction problem subject to the specification of energies
    Lesnic, D
    Elliott, L
    Ingham, DB
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1998, 41 (01) : 25 - 32
  • [38] Neural networks in solution of inverse coefficient heat conduction problem
    Pavlov, D.Yu.
    Vestnik Moskovskogo Universiteta. Ser. 15 Vychislitel'naya Matematika i Kibernetika, 1994, (04): : 44 - 51
  • [39] Solution of the Retrospective Inverse Heat Conduction Problem with Parametric Optimization
    Diligenskaya, A. N.
    HIGH TEMPERATURE, 2018, 56 (03) : 382 - 388
  • [40] THE UNIQUENESS OF THE SOLUTION OF AN INVERSE PROBLEM OF NONLINEAR HEAT-CONDUCTION
    MUZYLEV, NV
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1985, 25 (05): : 43 - 47