Robin double-phase problems with singular and superlinear terms

被引:3
|
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Repovs, Dusan D. [4 ,5 ,6 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[3] Univ Craiova, Dept Math, Craiova 200585, Romania
[4] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[5] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[6] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
关键词
Nonhomogeneous differential operator; Nonlinear regularity theory; Truncation; Strong comparison principle; Positive solutions; EQUATIONS;
D O I
10.1016/j.nonrwa.2020.103217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Robin problem driven by the sum of p-Laplacian and q-Laplacian (i.e. the (p, q)-equation). In the reaction there are competing effects of a singular term and a parametric perturbation lambda f (z, x), which is Caratheodory and (p - 1)-superlinear at x is an element of R, without satisfying the Ambrosetti-Rabinowitz condi-tion. Using variational tools, together with truncation and comparison techniques, we prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter lambda > 0 varies. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Solutions and positive solutions for superlinear Robin problems
    Papageorgiou, N. S.
    Vetro, C.
    Vetro, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (10)
  • [32] Robin problems with a general potential and a superlinear reaction
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (06) : 3244 - 3290
  • [33] Solutions for parametric double phase Robin problems
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    ASYMPTOTIC ANALYSIS, 2021, 121 (02) : 159 - 170
  • [34] Superlinear Singular Problems on the Half Line
    Irena Rachunková
    Jan Tomecek
    Boundary Value Problems, 2010
  • [35] Superlinear Singular Problems on the Half Line
    Rachunkova, Irena
    Tomecek, Jan
    BOUNDARY VALUE PROBLEMS, 2010,
  • [36] On a class of quasilinear problems with double-phase reaction and indefinite weight
    Onete, Florin-Iulian
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2019, 46 (01): : 218 - 222
  • [37] Elliptic problems with superlinear convection terms
    Boccardo, Lucio
    Buccheri, Stefano
    Cirmi, G. Rita
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 406 : 276 - 301
  • [38] DOUBLE-PHASE CONJUGATION
    ENGIN, D
    SEGEV, M
    ORLOV, S
    YARIV, A
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1994, 11 (09) : 1708 - 1717
  • [39] Anisotropic double-phase problems with indefinite potential: multiplicity of solutions
    Nikolaos S. Papageorgiou
    Dongdong Qin
    Vicenţiu D. Rădulescu
    Analysis and Mathematical Physics, 2020, 10
  • [40] Singular Double Phase Problems with Convection
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) : 947 - 962