We study a class of self-similar processes with stationary increments belonging to higher order Wiener chaoses which are similar to Hermite processes. We obtain an almost sure wavelet-like expansion of these processes. This allows us to compute the pointwise and local Holder regularity of sample paths and to analyse their behaviour at infinity. We also provide some results on the Hausdorff dimension of the range and graphs of multidimensional anisotropic self-similar processes with stationary increments defined by multiple Wiener-Ito integrals. (C) 2014 Elsevier B.V. All rights reserved.