Auto-scaling of Web Applications in Clouds: A Tail Latency Evaluation

被引:6
|
作者
Aslanpour, Mohammad S. [1 ,2 ]
Toosi, Adel N. [1 ]
Gaire, Raj [2 ]
Cheema, Muhammad Aamir [1 ]
机构
[1] Monash Univ, Fac Informat Technol, Clayton, Vic, Australia
[2] CSIROs Data61, Canberra, ACT, Australia
关键词
cloud computing; auto-scaling; tail latency; resource provisioning; performance evaluation;
D O I
10.1109/UCC48980.2020.00037
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mechanisms for dynamically adding and removing Virtual Machines (VMs) to reduce cost while minimizing the latency are called auto-scaling. Latency improvements are mainly fulfilled through minimizing the "average" response times while unpredictabilities and fluctuations of the Web applications, aka flash crowds, can result in very high latencies for users' requests. Requests influenced by flash crowd suffer from long latencies, known as outliers. Such outliers are inevitable to a large extent as auto-scaling solutions continue to improve the average, not the "tail" of latencies. In this paper, we study possible sources of tail latency in auto-scaling mechanisms for Web applications. Based on our extensive evaluations in a real cloud platform, we discovered sources of a tail latency as 1) large requests, i.e. those data-intensive; 2) long-term scaling intervals; 3) instant analysis of scaling parameters; 4) conservative, i.e. tight, threshold tuning; 5) load-unaware surplus VM selection policies used for executing a scale-down decision; 6) cooldown feature, although cost-effective; and 7) VM start-up delay. We also discovered that after improving the average latency by auto-scaling mechanisms, the tail may behave differently, demanding dedicated tail-aware solutions for auto-scaling mechanisms.
引用
收藏
页码:186 / 195
页数:10
相关论文
共 50 条
  • [21] Auto-scaling Applications in Edge Computing: Taxonomy and Challenges
    Taherizadeh, Salman
    Stankovski, Vlado
    INTERNATIONAL CONFERENCE ON BIG DATA AND INTERNET OF THINGS (BDIOT 2017), 2017, : 158 - 163
  • [22] Auto-Scaling Method in Hybrid Cloud for Scientific Applications
    Ahn, Younsun
    Choi, Jieun
    Jeong, Sol
    Kim, Yoonhee
    2014 16TH ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2014,
  • [23] Dynamic auto-scaling and scheduling of deadline constrained service workloads on IaaS clouds
    De Coninck, Elias
    Verbelen, Tim
    Vankeirsbilck, Bert
    Bohez, Steven
    Simoens, Pieter
    Dhoedt, Bart
    JOURNAL OF SYSTEMS AND SOFTWARE, 2016, 118 : 101 - 114
  • [24] Auto-Scaling with Apprenticeship Learning
    Hakimzadeh, Kamal
    Nicholson, Patrick K.
    Lugones, Diego
    PROCEEDINGS OF THE 2018 ACM SYMPOSIUM ON CLOUD COMPUTING (SOCC '18), 2018, : 512 - 512
  • [25] Self-Adaptively Auto-scaling for Mobile Cloud Applications
    Satoh, Ichiro
    11TH INTERNATIONAL CONFERENCE ON FUTURE NETWORKS AND COMMUNICATIONS (FNC 2016) / THE 13TH INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS AND PERVASIVE COMPUTING (MOBISPC 2016) / AFFILIATED WORKSHOPS, 2016, 94 : 9 - 16
  • [26] Dynamic Deployment and Auto-scaling Enterprise Applications on the Heterogeneous Cloud
    Srirama, Satish Narayana
    Iurii, Tverezovskyi
    Viil, Jaagup
    PROCEEDINGS OF 2016 IEEE 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD), 2016, : 927 - 932
  • [27] Predictive Auto-scaling Techniques for Clouds Subjected to Requests with Service Level Agreements
    Biswas, Anshuman
    Majumdar, Shikharesh
    Nandy, Biswajit
    El-Haraki, Ali
    2015 IEEE WORLD CONGRESS ON SERVICES, 2015, : 311 - 318
  • [28] ACAS: An anomaly-based cause aware auto-scaling framework for clouds
    Moghaddam, Sara Kardani
    Buyya, Rajkumar
    Ramamohanarao, Kotagiri
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2019, 126 : 107 - 120
  • [29] Machine learning-based auto-scaling for containerized applications
    Imdoukh, Mahmoud
    Ahmad, Imtiaz
    Alfailakawi, Mohammad Gh
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (13): : 9745 - 9760
  • [30] Auto-Scaling Approach for Cloud based Mobile Learning Applications
    Almutlaq, Amani Nasser
    Daadaa, Yassine
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (01) : 472 - 479