Critical time step for DEM simulations of dynamic systems using a Hertzian contact model

被引:63
|
作者
Burns, Shane J. [1 ]
Piiroinen, Petri T. [2 ]
Hanley, Kevin J. [1 ]
机构
[1] Univ Edinburgh, Inst Infrastruct & Environm, Sch Engn, Edinburgh EH9 3FB, Midlothian, Scotland
[2] Natl Univ Ireland Galway, Sch Math Stat & Appl Math, Galway, Ireland
基金
英国工程与自然科学研究理事会;
关键词
damping; DEM; Hertzian contact; stability; time step; DISCRETE ELEMENT SIMULATIONS; PART II; CRITERIA;
D O I
10.1002/nme.6056
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The discrete element method (DEM) typically uses an explicit numerical integration scheme to solve the equations of motion. However, like all explicit schemes, the scheme is only conditionally stable, with the stability determined by the size of the time step. Currently, there are no comprehensive techniques for estimating appropriate DEM time steps when a nonlinear contact interaction is used. It is common practice to apply a large factor of safety to these estimates to ensure stability, which unnecessarily increases the computational cost of these simulations. This work introduces an alternative framework for selecting a stable time step for nonlinear contact laws, specifically for the Hertz-Mindlin contact law. This approach uses the fact that the discretised equations of motion take the form of a nonlinear map and can be analysed as such. Using this framework, we analyse the effects of both system damping and the initial relative velocity of collision on the critical time step for a Hertz-Mindlin contact event between spherical particles.
引用
收藏
页码:432 / 451
页数:20
相关论文
共 50 条
  • [31] USING DELAUNAY TRIANGULATIONS TO INVESTIGATE THE EFFECT OF INTERPARTICLE FRICTION ON CRITICAL-STATE DEM SIMULATIONS
    Hanley, Kevin J.
    Huang, Xin
    O'Sullivan, Catherine
    PARTICLE-BASED METHODS IV-FUNDAMENTALS AND APPLICATIONS, 2015, : 890 - 899
  • [32] A timeliness model for time critical parallel systems
    Aussaguès, C
    David, V
    Muntean, T
    INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-IV, PROCEEDINGS, 1998, : 981 - 988
  • [33] Real-time flood simulations using CA model driven by dynamic observation data
    Li, Yi
    Gong, Jianhua
    Liu, Heng
    Zhu, Jun
    Song, Yiquan
    Liang, Jianming
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2015, 29 (04) : 523 - 535
  • [34] A coupled FEM/DEM model for pipe conveyor systems: Analysis of the contact forces on belt
    Zheng, Q. J.
    Xu, M. H.
    Chu, K. W.
    Pan, R. H.
    Yu, A. B.
    POWDER TECHNOLOGY, 2017, 314 : 480 - 489
  • [35] A mesh-dependent model for applying dynamic contact angles to VOF simulations
    Afkhami, S.
    Zaleski, S.
    Bussmann, M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (15) : 5370 - 5389
  • [36] Cohesive frictional-contact model for dynamic fracture simulations under compression
    Baek, Hyunil
    Park, Kyoungsoo
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2018, 144 : 86 - 99
  • [37] Polynomisches Kontaktmodell zur Abbildung pastösen Materialverhaltens in DEM-SimulationenPolynomial Contact Model for Depicting Pasty Material Behaviour in DEM Simulations
    Felix Platzer
    Eric Fimbinger
    BHM Berg- und Hüttenmännische Monatshefte, 2022, 167 (2) : 61 - 65
  • [38] Simulations of roughness growth on rails - results from a 2D non-Hertzian, non-steady contact model
    Xie, G.
    Iwnicki, S. D.
    VEHICLE SYSTEM DYNAMICS, 2008, 46 (1-2) : 117 - 128
  • [39] Dealing with dynamic changes in time critical decision-making for MOUT simulations
    Ting, Shang-Ping
    Zhou, Suiping
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2009, 20 (2-3) : 427 - 436
  • [40] An efficient numerical simulation method for vertical vehicle-track dynamic interactions using the nonlinear Hertzian contact spring
    Kawasaki, Y.
    Yoshimura, A.
    DYNAMICS OF VEHICLES ON ROADS AND TRACKS, 2016, : 1155 - 1162