On the spectrum of the non-Hermitian phase-difference model

被引:15
|
作者
Bogoliubov, NM [1 ]
Nassar, T [1 ]
机构
[1] UNIV HELSINKI, HELSINKI INST PHYS, FIN-00014 HELSINKI, FINLAND
基金
芬兰科学院;
关键词
algebraic Bethe ansatz; phase operators;
D O I
10.1016/S0375-9601(97)00561-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A modified version of the phase-difference model is introduced and diagonalized by means of the algebraic Bethe ansatz. The spectrum is determined for both small and large values of the coupling constant, and the low-lying excitations are shown to exhibit a conformal profile, Applications of the model to quantum optics and growth problems are briefly discussed. (C) 1997 Published by Elsevier Science B.V.
引用
收藏
页码:345 / 350
页数:6
相关论文
共 50 条
  • [21] Non-Hermitian Hamiltonians with Real Spectrum in Quantum Mechanics
    J. da Providência
    N. Bebiano
    J. P. da Providência
    Brazilian Journal of Physics, 2011, 41 : 78 - 85
  • [22] Spectrum of Non-Hermitian Heavy Tailed Random Matrices
    Bordenave, Charles
    Caputo, Pietro
    Chafai, Djalil
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (02) : 513 - 560
  • [23] Interface between Hermitian and non-Hermitian Hamiltonians in a model calculation
    Jones, H. F.
    PHYSICAL REVIEW D, 2008, 78 (06):
  • [24] Spectrum of Non-Hermitian Heavy Tailed Random Matrices
    Charles Bordenave
    Pietro Caputo
    Djalil Chafaï
    Communications in Mathematical Physics, 2011, 307 : 513 - 560
  • [25] Non-Hermitian Hamiltonians with a real spectrum and their physical applications
    Ali Mostafazadeh
    Pramana, 2009, 73 : 269 - 277
  • [26] Non-Hermitian Skin Effect in a Non-Hermitian Electrical Circuit
    Liu, Shuo
    Shao, Ruiwen
    Ma, Shaojie
    Zhang, Lei
    You, Oubo
    Wu, Haotian
    Xiang, Yuan Jiang
    Cui, Tie Jun
    Zhang, Shuang
    RESEARCH, 2021, 2021
  • [27] Analyzing the spectrum of general, non-hermitian Dirac operators
    Gattringer, C
    Hip, I
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 73 : 871 - 873
  • [28] Entanglement phase transitions in non-Hermitian quasicrystals
    Zhou, Longwen
    PHYSICAL REVIEW B, 2024, 109 (02)
  • [29] Geometric phase for a periodic non-Hermitian Hamiltonian
    Choutri, H
    Maamache, M
    Menouar, S
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2002, 40 (02) : 358 - 360
  • [30] Topological Phase Transition in non-Hermitian Quasicrystals
    Longhi, S.
    PHYSICAL REVIEW LETTERS, 2019, 122 (23)