On the spectrum of the non-Hermitian phase-difference model

被引:15
|
作者
Bogoliubov, NM [1 ]
Nassar, T [1 ]
机构
[1] UNIV HELSINKI, HELSINKI INST PHYS, FIN-00014 HELSINKI, FINLAND
基金
芬兰科学院;
关键词
algebraic Bethe ansatz; phase operators;
D O I
10.1016/S0375-9601(97)00561-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A modified version of the phase-difference model is introduced and diagonalized by means of the algebraic Bethe ansatz. The spectrum is determined for both small and large values of the coupling constant, and the low-lying excitations are shown to exhibit a conformal profile, Applications of the model to quantum optics and growth problems are briefly discussed. (C) 1997 Published by Elsevier Science B.V.
引用
收藏
页码:345 / 350
页数:6
相关论文
共 50 条
  • [1] On the spectrum of the non-hermitian phase-difference model
    Bogoliubov, Nikolai M.
    Nassar, Tarek
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 234 (05): : 345 - 350
  • [2] On the remarkable spectrum of a non-Hermitian random matrix model
    Holz, DE
    Orland, H
    Zee, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3385 - 3400
  • [3] ON THE METRIC OF A NON-HERMITIAN MODEL
    Ergun, Ebru
    Saglam, Mesude
    REPORTS ON MATHEMATICAL PHYSICS, 2010, 65 (03) : 367 - 378
  • [4] Non-Hermitian Maryland model
    Longhi, Stefano
    PHYSICAL REVIEW B, 2021, 103 (22)
  • [5] Geometric phase and phase diagram for a non-Hermitian quantum XY model
    Zhang, X. Z.
    Song, Z.
    PHYSICAL REVIEW A, 2013, 88 (04):
  • [6] Phase transitions in non-Hermitian superlattices
    Longhi, Stefano
    PHYSICAL REVIEW B, 2023, 107 (13)
  • [7] On the Spectrum of a Discrete Non-Hermitian Quantum System
    Ergun, Ebru
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [8] ON THE REALITY OF THE SPECTRUM OF A NON-HERMITIAN DISCRETE HAMILTONIAN
    Ergun, Ebru
    REPORTS ON MATHEMATICAL PHYSICS, 2009, 63 (01) : 75 - 93
  • [9] Relative Entropy as a Measure of Difference between Hermitian and Non-Hermitian Systems
    Jeong, Kabgyun
    Park, Kyu-Won
    Kim, Jaewan
    ENTROPY, 2020, 22 (08)
  • [10] Polarization and entanglement spectrum in non-Hermitian systems
    Ortega-Taberner, Carlos
    Rodland, Lukas
    Hermanns, Maria
    PHYSICAL REVIEW B, 2022, 105 (07)